Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fires in far northern forests to have cooling, not warming, effect

20.11.2006
Droughts and longer summers tied to global warming are causing more fires in the Earth's vast northernmost forests, a phenomenon that will spew a steadily increasing amount of carbon dioxide into the atmosphere.

Many scientists have predicted that the result of this influx of greenhouse gas will be even more warming, followed by even more fires and so on – a vicious climactic cycle.

But a team of scientists, including two University of Florida ecologists, has arrived at just the opposite conclusion. Their research shows that while the carbon released by burning high-latitude forests of North America, Europe and Russia will no doubt have a warming effect, it will be less than an unexpected cooling effect. That will come from millions of new deciduous trees reflecting the sun's light away from Earth with their light green leaves in the summer. In the winter, these trees lose their leaves, and white snow on the ground will reflect even more light.

A paper about the research is set to appear Friday in the journal Science.

"The reflectivity effect in the long run is larger than the carbon effect," said Michelle Mack, a co-author and a UF assistant professor of ecology in the botany department.

The research is of broad interest because it calls for a re-examination of strategies to reduce carbon dioxide emissions through human-wrought changes to ecosystems, such as forest management and tree plantations. These strategies have been widely discussed since the 1990s. The study doesn't suggest that such so-called "carbon sequestration" plans will never work. Indeed, reducing atmospheric carbon is generally a good idea, say Mack and Ted Schuur, a UF assistant professor of ecology in the botany department and a co-author.

Rather, the study implies that scientists need to look at the entire chain of events in a plan to manage climate effects using ecosystems before concluding how the plan will contribute to, or offset, a warming effect.

"What we're showing," Schuur said, "is that if you are going to manage an ecosystem to have an effect on the climate via carbon sequestration, you need to consider all the other climate forcing factors you may be changing at the same time."

Northern, or boreal, forests occupy 5.7 million square miles, or 14.5 percent, of the earth's land surface. They store 30 percent of Earth's "carbon pool" in plants and soils.

Scientists agree that the effects of global warming are most severe nearest the poles, and boreal forests are already facing longer summers and more prolonged dry periods. This has spurred many large fires, with the most massive forest fires in recorded Alaskan history occurring in the summer 2004.

While carbon emissions from these fires have long been thought to contribute to global warming, the UF and other researchers decided to look at other associated climate effects of fires. They focused on both the single year after an Alaska fire and for an 80-year period during which plants and trees would re-grow over the burnt landscape.

Seventeen researchers from at least nine universities and research institutes conducted a wide range of investigations for the study, which examined the site of the 1999 Donnelly Flats crown fire, a fire that burned about 18,780 acres in Alaska's interior.

At UF, Mack measured the amount of carbon released in the burning of black spruce, the most common tree species in North American boreal forest, and the re-growth of new vegetation. Schuur studied the exchange of carbon dioxide between boreal soils and the atmosphere. Other scientists examined the so-called "albedo," or amount of light reflected from spruce, burned soils and broad-leaved trees.

The scientists plugged their field observations and satellite data into computer models, which extended the results eight decades. The first year following fire was warmer, due in part to added carbon, aerosol and ozone from burning, the researchers found. But the models came to the opposite conclusion relatively quickly, within 10 to 15 years.

The main reason was that the first trees to replace the burnt conifers were aspen, birch and other deciduous trees, with large light-green leaves. These leaves reflected more of the sun's energy than did the dark green, thin-needled black spruce, and as a result, less of the incoming energy went into heating the ecosystem. Even more important, in the winter the birches and other deciduous trees lose their leaves – revealing even more reflective (white snow. The black spruce would eventually grow back, but it will take a long time to dominate the deciduous trees and reduce the reflected light, the researchers said.

Ted Schuur | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>