Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forest fires may lead to cooling of northern climate

17.11.2006
Brighter, snowy surface offsets impact of greenhouse gases, UCI study finds

Countering hypotheses that forest fires in Alaska, Canada and Siberia warm the climate, scientists at UC Irvine have discovered that cooling may occur in areas where charred trees expose more snow, which reflects sunlight into space.

This finding suggests that taking steps to prevent boreal forest fires to limit the release of carbon dioxide and methane -- the most influential greenhouse gases -- may unintentionally warm the climate in northern regions. Unusually large fires devoured forests in these areas over the past decade, and scientists predict that with climate warming, fires may occur more frequently over the next several centuries as a result of a longer fire season. Sunlight absorbed by the Earth tends to cause warming, while heat reflected back into space tends to cause cooling.

"Boreal forest fires release greenhouse gases that contribute to climate warming, but inseparable changes in the forest canopy cause more sunlight to be reflected back into space during spring and summer for many decades after fire," said James Randerson, associate professor of Earth system science at UCI and lead author of the study. "This cooling effect cancels the impact of the greenhouse gases, so the net effect of fire is close to neutral when averaged globally, and in northern regions may lead to slightly colder temperatures."

Randerson and UCI scientists Kathleen Treseder, Michael Goulden and Charles Zender published their research in the current online edition of Science.

This is the first study to simultaneously analyze all aspects of how boreal fires influence climate. Previous studies by other scientists have suggested that fires in boreal regions accelerate climate warming because greenhouse gases from burning trees and vegetation are released into the atmosphere. Greenhouse gases absorb infrared radiation and trap heat.

The scientists focused on the Donnelly Flats fire in central Alaska, which burned about 16,549 acres in mid-June 1999. After the fire, scientists took field measurements of incoming and outgoing radiation, carbon dioxide being absorbed or emitted by plants, wind speed and other conditions in Donnelly Flats. They took similar measurements on nearby land that burned in 1987 and on land that burned in approximately 1920.

Scientists found that, right after the fire, large amounts of greenhouse gases entered the atmosphere and caused warming. Ozone levels increased, and ash from the fire fell on remote sea ice and the Greenland ice sheet, darkening the surface and causing more radiation from the sun to be absorbed. The following spring, however, the landscape within the perimeter of the fire was brighter than before the fire because fewer trees shaded the ground. Snow on the ground -- more exposed after the fire -- reflected more sunlight back into space, leading to cooling.

As years passed, lighter-colored deciduous trees such as aspen and birch grew to replace the dark conifer forest. When they lost their leaves in the winter, the snow-covered ground was more exposed. Younger trees also take in carbon dioxide at a faster rate than older trees. After 80 years, enough conifer trees grow back to darken the landscape and push the ecosystem toward a more climate-neutral state.

This study has implications for reforestation projects in which a primary goal is keeping carbon dioxide out of the atmosphere to slow climate warming. "We need to explore all possible ways to reduce the accumulation of greenhouse gases in the atmosphere. Improving the efficiency of our use of fossil fuels has to be our highest priority," Randerson said. "Storing carbon in terrestrial ecosystems also can help, but we have to consider all of the different ways that ecosystems can influence climate."

Scientists tracked the change in the amount of radiation entering and leaving the climate system as a result of the fire -- a measurement closely related to global air temperature. Typically, fires in boreal regions occur in the same area every 80 to 150 years. Scientists, however, found that when fires occur more frequently, more radiation is lost from the Earth and net cooling results. Specifically, they determined when fire returns 20 years earlier than anticipated, 0.5 watts per square meter of area burned are absorbed by the Earth from greenhouse gases, but more snow exposure and brighter surfaces causes 0.9 watts per square meter to be reflected back into space. The net effect is cooling. Watts are used to measure the rate at which energy is gained or lost from the Earth.

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.uci.edu

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>