Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Listening to gunshots may save lives and wildlands

17.11.2006
From the crack of a supersonic bullet, Montana State University electrical engineering professor Rob Maher is exploring how sound can be used for everything from saving soldiers from snipers to saving wilderness from noise pollution.

This fall, Maher presented the results of two years of research into gunshots at the Institute of Electrical and Electronic Engineers (IEEE) Signal Processing Society's annual meeting in Jackson Hole, Wyo.

Because of its intense energy and distinctness, a gunshot is "the perfect signal" with which to explore the uses of sound, Maher said.

"It produces what engineers call the 'impulse response' of the sonic environment," Maher said. "If we can't make sense of how a gunshot behaves, then it's unlikely we can do much with more complicated, or lesser quality, sounds."

Maher initially explored two questions with gunshots: First, could the sound of a gunshot on a 911 recording be linked to a specific weapon? The question has intrigued prosecuting attorneys for decades. Second, could the sound of a gunshot be used to determine the location of a hidden sniper?

Through a search of previous studies and his own research, Maher found the "acoustical fingerprinting" of a gunshot from a 911 tape was impossible.

"If you had a very high quality recording made with a very high quality microphone, you might be able to determine if it was a handgun or rifle and the type of ammunition - at best - but you couldn't rule in, or out, a specific firearm," Maher said.

Finding a sniper holds more promise. While a sniper may be able to hide and use a silencer to cover the sound of gunpowder exploding in a shell, the laws of physics will reveal the path of a bullet.

"Most military rifles fire bullets at supersonic speeds," Maher said. "At that speed, the air in front of the bullet doesn't move out of the way in a nice, regular fashion. It moves in a shock."

That shock creates one "boom." There is a second, smaller "boom" as the air returns to normal.

This phenomenon is clearly heard when something big, like a space shuttle, breaks the sound barrier. The shuttle creates two booms as it comes in for landing.

"There is no way to hide the shock wave created by a supersonic bullet," Maher said.

Those booms can be recorded using microphones placed in different locations and then with geometry, the trajectory of the bullet can be determined through triangulation.

Maher successfully determined the trajectory of a bullet using this method at the Logan Shooting Range, near Trident, Mont.

"There are a few commercial systems using this method in Iraq," Maher said. "But they're classified and it's not clear what's being done."

The only way a sniper could hide from such shockwave detection is to fire a bullet that travels at less than the speed of sound, an unlikely prospect since the world's most common weapon, the AK-47 rifle, fires bullets at a little more than twice the speed of sound.

While Maher was able to determine the trajectory of a bullet on a flat shooting range, the real-world application in a city, where sound would bounce off buildings or be absorbed by trees is far more difficult and it plays into another research area: using technology to pick a desired sound from background noise.

"For humans, picking out a desired sound from reflections or background is very easy: A parent can pick out their child's cry in a noisy nursery," Maher said. "But creating technology that could mimic this is very difficult."

Technology that could sort desired sounds from background noise could be used to monitor wildlife habitats. Microphones could record a month's worth of sound in an area and then computer software would sort that massive amount of data into useable chunks: elk bugles, aircraft noise, wolf howls, gunshots, etc.

"Take frogs for example," Maher said. "Frogs are very sensitive to environmental changes. You might be able to augment temperature, moisture and other environmental data with 24/7 recordings of frog vocalizations to estimate population trends.

"You might learn all sorts of interesting things: such as there is less frog noise year-to-year, or maybe the frogs croak at different times year-to-year based on other environmental factors."

But to hear the frogs, Maher will have to spend some more time listening to gunshots.

"The next step is to do more careful calibrations on all the parameters: the gunpowder, the local geometry, the acoustical characteristics of the vicinity and then work from there," he said.

It has been an interesting project for Maher, not only because it involves acoustics - one of his specialties - but also because he came into the project knowing almost nothing about guns.

"I'm not a hunter," he said. "But fortunately in Montana I've had no trouble finding lots of knowledgeable help."

Contact: Rob Maher, (406) 994-7759 or rmaher@ece.montana.edu.

Rob Maher | EurekAlert!
Further information:
http://www.montana.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>