Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saving space

16.11.2006
Latitude's not enough

According to a recent study in Ecological Monographs, predicting the impact of climate change on organisms is much more complicated than simply looking at species northern and southern range limits. Studying the ecologically important California Sea Mussel (Mytilus californianus), Brian Helmuth (University of South Carolina) and colleagues from the University of California - Santa Barbara, the University of British Columbia – Vancouver, and Oregon State University measured body temperatures of this mussel along most of its range, from Washington to Southern California.

"Mosaic patterns of thermal stress in the rocky intertidal zone: Implications for climate change," suggests that conserving areas based on a few similarities including location, may not be enough, as variations in temperature and other variables can turn what would seem like an ideal and "typical" environment into one that's decidedly different from nearby sites.

As global climate changes occur, "the role of organism temperature in driving species distribution patterns has assumed a further sense of urgency," say the authors.

Like terrestrial ectotherms (organisms that can not regulate their body temperature only through outside sources such as the sun), the body temperatures of intertidal invertebrates are driven by multiple factors in their environment. Solar radiation, wind speed, humidity, air and ground temperatures, along with the organisms' own shape, color and mass affect its body temperature.

"In many cases, science has a poor understanding of how physiologically relevant environmental factors vary in space and time. We know little of how 'climate' is translated into patterns of body temperature, especially at scales important to organisms," says Helmuth.

Mussel distribution and physiology is known to be negatively affected by high-temperature stress.

"The thermal environment must be considered from the perspective of the organism's interaction with the physical environment, as well as the physiological response of that organism to the environment," according to the study.

Spanning five years and almost 1000 miles (2000 km) the scientists explored how body temperatures change across latitudes, and the role of splashing waves on the mussels. Using sensors placed in several mussel-strong regions throughout the organisms' territory, the scientists were able to study the temperature changes the mussels experienced on a day to day basis, as well as on a yearly basis. They found that tides as well as wave action impact the temperature ranges the species experience, with varying tolerances depending on where the mussels live.

Helumth and his colleagues found several "hot spots," - areas warmer than expected - and "cold spots" - sites where daily minimal temperatures ran lower than other sites around the same latitude, creating a picture of complex thermal mosaics rather than simple latitudinal gradients.

Importantly, they found that animal temperatures were as hot at sites well within the species range as they were at sites far to the south, suggesting climate change may cause damage not just at range edges, where scientists usually look for such effects, but also at other "hot spots" well within species ranges.

"Our results stress the importance of examining patterns of environmental variables at levels relevant to the organisms, and in forecasting the impacts of climate changes across the species' range," state the researchers.

Annie Drinkard | EurekAlert!
Further information:
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>