Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saving space

16.11.2006
Latitude's not enough

According to a recent study in Ecological Monographs, predicting the impact of climate change on organisms is much more complicated than simply looking at species northern and southern range limits. Studying the ecologically important California Sea Mussel (Mytilus californianus), Brian Helmuth (University of South Carolina) and colleagues from the University of California - Santa Barbara, the University of British Columbia – Vancouver, and Oregon State University measured body temperatures of this mussel along most of its range, from Washington to Southern California.

"Mosaic patterns of thermal stress in the rocky intertidal zone: Implications for climate change," suggests that conserving areas based on a few similarities including location, may not be enough, as variations in temperature and other variables can turn what would seem like an ideal and "typical" environment into one that's decidedly different from nearby sites.

As global climate changes occur, "the role of organism temperature in driving species distribution patterns has assumed a further sense of urgency," say the authors.

Like terrestrial ectotherms (organisms that can not regulate their body temperature only through outside sources such as the sun), the body temperatures of intertidal invertebrates are driven by multiple factors in their environment. Solar radiation, wind speed, humidity, air and ground temperatures, along with the organisms' own shape, color and mass affect its body temperature.

"In many cases, science has a poor understanding of how physiologically relevant environmental factors vary in space and time. We know little of how 'climate' is translated into patterns of body temperature, especially at scales important to organisms," says Helmuth.

Mussel distribution and physiology is known to be negatively affected by high-temperature stress.

"The thermal environment must be considered from the perspective of the organism's interaction with the physical environment, as well as the physiological response of that organism to the environment," according to the study.

Spanning five years and almost 1000 miles (2000 km) the scientists explored how body temperatures change across latitudes, and the role of splashing waves on the mussels. Using sensors placed in several mussel-strong regions throughout the organisms' territory, the scientists were able to study the temperature changes the mussels experienced on a day to day basis, as well as on a yearly basis. They found that tides as well as wave action impact the temperature ranges the species experience, with varying tolerances depending on where the mussels live.

Helumth and his colleagues found several "hot spots," - areas warmer than expected - and "cold spots" - sites where daily minimal temperatures ran lower than other sites around the same latitude, creating a picture of complex thermal mosaics rather than simple latitudinal gradients.

Importantly, they found that animal temperatures were as hot at sites well within the species range as they were at sites far to the south, suggesting climate change may cause damage not just at range edges, where scientists usually look for such effects, but also at other "hot spots" well within species ranges.

"Our results stress the importance of examining patterns of environmental variables at levels relevant to the organisms, and in forecasting the impacts of climate changes across the species' range," state the researchers.

Annie Drinkard | EurekAlert!
Further information:
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>