Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Air shower’ set to cut water use by 30 per cent

13.11.2006
As Australians become increasingly alert to the importance of using water wisely in the home, CSIRO researchers have found a way to use a third less water when you shower – by adding air.

The scientists have developed a simple ‘air shower’ device which, when fitted into existing showerheads, fills the water droplets with a tiny bubble of air. The result is the shower feels just as wet and just as strong as before, but now uses much less water.

The researchers, from CSIRO Manufacturing Materials Technology in Melbourne, say the device increases the volume of the shower stream while reducing the amount of water used by about 30 per cent.

Given the average Australian household uses about 200,000 litres of water a year, and showers account for nearly a third of this, the ‘air shower’ could help the average household save about 15,000-20,000 litres a year. If you extend this across the population, that is an annual saving of more than 45,000 Olympic-sized swimming pools.

The Aerated Showerhead creates the sensation of having a full and steady stream of water even though the water is now more like a wet shell around a bubble of air.

While the general concept of using an aerated showerhead to save water is not new, the technology behind the CSIRO’s device is novel.

“After almost two years of research and development, CSIRO is ready to take the aerated shower head technology to the commercialisation stage.”Developed by a team led by Dr Jie Wu, the aeration device is a small nozzle that fits inside a standard showerhead. The nozzle uses a small Venturi tube – a tube for which the diameter varies, creating a difference in pressure and fluid speed. Air is sucked into the Venturi tube as a result of the partial vacuum created, causing air and water to mix, forming tiny bubbles within the water stream.

“The nozzle creates a vacuum that sucks in air and forces it into the water stream,” Dr Wu says.

“We make the water droplets in the stream hollow and the bubbles expand the volume of the shower stream.”

Small-scale experiments using the aeration device found that people detected no difference in water pressure, sensation, or overall perception of showering.

After almost two years of research and development, CSIRO is ready to take the aerated shower head technology to the commercialisation stage.

“We have very promising results on the aerated showerhead’s water-saving potential. Now we are looking for commercialisation partners who will be involved in the development needed to turn the technology into a marketable device,” Dr Wu says.

He expects the nozzle would cost less than $20 and could be installed by householders.

Read more media releases in our Media Centre.

Dr. Dilip Manuel | EurekAlert!
Further information:
http://www.csiro.au

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>