Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists use llama droppings to help combat water pollution


Scientists from Newcastle University are using llama droppings to help combat environmental problems caused by polluted water seeping from abandoned silver and tin mines in the Bolivian Andes.

The project is being spearheaded by Paul Younger, Professor of Hydrogeochemical Engineering at Newcastle University. It has been adapted from a community-based natural regeneration technique which uses waste materials to treat polluted mine waters. Professor Younger pioneered the technique, along with scientists and engineers from the University working in partnership with the residents of former mining communities in North East England, who called him in to help them address the threat to their environment caused by polluted water draining from disused mines.

Mine water has a high acid content and is extremely damaging to the ecology of the surrounding areas. The scientific basis for the regeneration technique, which involves the creation of `low-tech` bioreactors constructed in the form of wetlands with a substrata of compost and limestone, is called bacterial sulphate reduction. Bacteria living in the compost and limestone use dissolved sulphate, found in abundance in mine water, as an energy source, producing sulphide. The sulphide then reacts with the dissolved iron and traps it, as iron sulphide, in the compost bed. This process also raises the pH in the water and generates alkalinity.
This technique has been so successful in the North East of England that it is now being customised and exported for similar problems in other countries and is helping to make Newcastle University Europe`s leading centre for minewater research.

In the Cordillera Real of the Andes, perennial drainage from abandoned tin and silver mines is grossly polluting the main water supply of the capital city, La Paz. Some of this extremely polluted water is used untreated by impoverished local residents for domestic and agricultural purposes, and although the city waterworks efficiently removes iron from the water, unpublished data show that toxic elements such as cadmium have occasionally entered the public water supply in La Paz at concentrations well above the limits specified by the World Health Organisation.

The mine from which the pollution emerges, Mina Milluni, was closed abruptly in 1985 as a consequence of the global slump in tin prices which occurred in that year. Professor Younger explains: `The former mining company has neither the financial resources nor the legal responsibility to remediate the polluted drainage, so it seems that the problem will continue indefinitely unless some local champions decide to find solutions of their own`.

Drawing inspiration from some of the passive treatment systems developed in the UK, Professor Younger has been working with a local engineer, Marcos Arce, on preliminary experiments to assess the feasibility of treating the acid water from Mina Milluni using bacterial sulphate reduction and limestone dissolution.

Professor Younger continues: `The problems of implementing this technology at Milluni are considerable: lying at about 4400m above sea level, nocturnal freezing is the norm for much of the year, and supplies of compost materials similar to those that have been used successfully in the UK , such as horse and/or cow manure, with composted tree bark mulch, are not readily available in the Bolivian Andes. However, llama droppings are abundant, though it hardly needs stating that no previous data exist on their performance in acid mine drainage remediation systems`.
Professor Younger and his colleagues constructed a series of tanks in which limestone gravel was buried beneath half metre-deep layers of llama droppings. A continuous flow of acid drainage was directed through the tanks for a five-month period between June and November 2000, which is also the coldest period of the year.

`The findings from these experiments are extremely encouraging. As hoped, the llama droppings do promote the activity of sulphate-reducing bacteria (sulphate reduction averaged around 16%), and the average pH of the water rose from 3.2 to 6.3 on passing through the four tanks`, said Professor Younger.

`We are currently attempting to identify funding sources which would support Marcos to work with local artesanal miners and other residents to develop larger bioreactors in the field at this and other sites, with the long-term aim of empowering the poverty-stricken communities of indigenous people to reclaim and sustain the water sources which are currently denied to them by the legacy of large scale mining` he concluded.

As a result of his research, Professor Younger and his team have been asked to help the European Commission draft its law on the regulation of pollution from mines.

Melanie Reed | alphagalileo

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

New 4-D printer could reshape the world we live in

21.03.2018 | Life Sciences

Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

21.03.2018 | Trade Fair News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>