Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discipline developed by Hebrew University researcher leads to 1st international study group

10.11.2006
Movement ecology is on the move, with the world’s first international research group on this topic having begun its work this fall at the Hebrew University of Jerusalem’s Institute for Advanced Studies

Movement ecology is a developing academic pursuit, combining expertise in a variety of fields, including biology, ecology, botany, environmental science, physics, mathematics, virology and others.

It has been largely developed by a Hebrew University of Jerusalem researcher, Prof. Ran Nathan, who heads the Movement Ecology Laboratory in the Department of Evolution, Systematics and Ecology at the university’s Alexander Silberman Institute of Life Sciences.. It involves the study of how plant and animal matter travels from one place to another, sometimes for great distances and in highly surprising ways.

The research group now at work at the Hebrew University’s Institute for Advanced Studies was convened at the initiative and under the leadership of Prof. Nathan and includes participants from the University of California at Berkeley, the University of California at Davis, Princeton University, Stony Brook University and Rutgers University, all from the U.S.; the Spanish Research Council; and from the Hebrew University, Ben-Gurion University of the Negev and the Technion - Israel Institute of Technology.

Prof. Nathan emphasizes that organism movement research is central to the understanding of how ecological systems work and has important implications for human life. A comprehensive understanding of movement as a process will help to conserve biodiversity, adapt to changes produced by global warming, and cope with environmental threats such as infectious diseases, invasive alien species, agricultural pests and the spread of allergens.

The field of movement ecology and Prof. Nathan were given a large boost of recognition in a recent special issue of Science magazine on migration and dispersal. The issue included an article by Prof. Ran Nathan on his specialty of long-distance dispersal of plants.

In addition, the same issue contained a news article which largely focused on the work of Nathan and his students, as well as others in the U.S., Britain and Australia, focusing on dispersal of both plants and animals.

The article noted that researchers have sought, for centuries, “to understand when, why and how various species crawl, swim, fly, float or hoof it to new locales. That work has led to maps of migration routes and details about dispersals.”

“But,” the article quoted Prof. Nathan as saying, “few biologists have tried to fit those data into a big picture of movement in general.” Now, said the article, through the new discipline called movement ecology, Nathan and others “are beginning to derive testable hypotheses about the mobile behaviors of animals, microbes and even the seeds of plants. Their goal is to join empirical work to theories and to build models that fill in gaps in our understanding of movement -- be it over millimeters or continents or by groups of individuals – in the natural world.”

Last year, Nathan was chosen as the winner of the Hebrew University President’s Prize for the Outstanding Young Researcher for his pioneering work on seed dispersal. In May this year he was awarded the prestigious Wilhelm Bessel Research Award from the Humboldt Foundation of Germany.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>