Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discipline developed by Hebrew University researcher leads to 1st international study group

10.11.2006
Movement ecology is on the move, with the world’s first international research group on this topic having begun its work this fall at the Hebrew University of Jerusalem’s Institute for Advanced Studies

Movement ecology is a developing academic pursuit, combining expertise in a variety of fields, including biology, ecology, botany, environmental science, physics, mathematics, virology and others.

It has been largely developed by a Hebrew University of Jerusalem researcher, Prof. Ran Nathan, who heads the Movement Ecology Laboratory in the Department of Evolution, Systematics and Ecology at the university’s Alexander Silberman Institute of Life Sciences.. It involves the study of how plant and animal matter travels from one place to another, sometimes for great distances and in highly surprising ways.

The research group now at work at the Hebrew University’s Institute for Advanced Studies was convened at the initiative and under the leadership of Prof. Nathan and includes participants from the University of California at Berkeley, the University of California at Davis, Princeton University, Stony Brook University and Rutgers University, all from the U.S.; the Spanish Research Council; and from the Hebrew University, Ben-Gurion University of the Negev and the Technion - Israel Institute of Technology.

Prof. Nathan emphasizes that organism movement research is central to the understanding of how ecological systems work and has important implications for human life. A comprehensive understanding of movement as a process will help to conserve biodiversity, adapt to changes produced by global warming, and cope with environmental threats such as infectious diseases, invasive alien species, agricultural pests and the spread of allergens.

The field of movement ecology and Prof. Nathan were given a large boost of recognition in a recent special issue of Science magazine on migration and dispersal. The issue included an article by Prof. Ran Nathan on his specialty of long-distance dispersal of plants.

In addition, the same issue contained a news article which largely focused on the work of Nathan and his students, as well as others in the U.S., Britain and Australia, focusing on dispersal of both plants and animals.

The article noted that researchers have sought, for centuries, “to understand when, why and how various species crawl, swim, fly, float or hoof it to new locales. That work has led to maps of migration routes and details about dispersals.”

“But,” the article quoted Prof. Nathan as saying, “few biologists have tried to fit those data into a big picture of movement in general.” Now, said the article, through the new discipline called movement ecology, Nathan and others “are beginning to derive testable hypotheses about the mobile behaviors of animals, microbes and even the seeds of plants. Their goal is to join empirical work to theories and to build models that fill in gaps in our understanding of movement -- be it over millimeters or continents or by groups of individuals – in the natural world.”

Last year, Nathan was chosen as the winner of the Hebrew University President’s Prize for the Outstanding Young Researcher for his pioneering work on seed dispersal. In May this year he was awarded the prestigious Wilhelm Bessel Research Award from the Humboldt Foundation of Germany.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>