Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discipline developed by Hebrew University researcher leads to 1st international study group

10.11.2006
Movement ecology is on the move, with the world’s first international research group on this topic having begun its work this fall at the Hebrew University of Jerusalem’s Institute for Advanced Studies

Movement ecology is a developing academic pursuit, combining expertise in a variety of fields, including biology, ecology, botany, environmental science, physics, mathematics, virology and others.

It has been largely developed by a Hebrew University of Jerusalem researcher, Prof. Ran Nathan, who heads the Movement Ecology Laboratory in the Department of Evolution, Systematics and Ecology at the university’s Alexander Silberman Institute of Life Sciences.. It involves the study of how plant and animal matter travels from one place to another, sometimes for great distances and in highly surprising ways.

The research group now at work at the Hebrew University’s Institute for Advanced Studies was convened at the initiative and under the leadership of Prof. Nathan and includes participants from the University of California at Berkeley, the University of California at Davis, Princeton University, Stony Brook University and Rutgers University, all from the U.S.; the Spanish Research Council; and from the Hebrew University, Ben-Gurion University of the Negev and the Technion - Israel Institute of Technology.

Prof. Nathan emphasizes that organism movement research is central to the understanding of how ecological systems work and has important implications for human life. A comprehensive understanding of movement as a process will help to conserve biodiversity, adapt to changes produced by global warming, and cope with environmental threats such as infectious diseases, invasive alien species, agricultural pests and the spread of allergens.

The field of movement ecology and Prof. Nathan were given a large boost of recognition in a recent special issue of Science magazine on migration and dispersal. The issue included an article by Prof. Ran Nathan on his specialty of long-distance dispersal of plants.

In addition, the same issue contained a news article which largely focused on the work of Nathan and his students, as well as others in the U.S., Britain and Australia, focusing on dispersal of both plants and animals.

The article noted that researchers have sought, for centuries, “to understand when, why and how various species crawl, swim, fly, float or hoof it to new locales. That work has led to maps of migration routes and details about dispersals.”

“But,” the article quoted Prof. Nathan as saying, “few biologists have tried to fit those data into a big picture of movement in general.” Now, said the article, through the new discipline called movement ecology, Nathan and others “are beginning to derive testable hypotheses about the mobile behaviors of animals, microbes and even the seeds of plants. Their goal is to join empirical work to theories and to build models that fill in gaps in our understanding of movement -- be it over millimeters or continents or by groups of individuals – in the natural world.”

Last year, Nathan was chosen as the winner of the Hebrew University President’s Prize for the Outstanding Young Researcher for his pioneering work on seed dispersal. In May this year he was awarded the prestigious Wilhelm Bessel Research Award from the Humboldt Foundation of Germany.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>