Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accelerating Loss of Ocean Species Threatens Human Well-being

03.11.2006
Current trend projects collapse of all currently fished seafoods before 2050

In a study published in the November 3 issue of the journal, Science, an international group of ecologists and economists show that the loss of biodiversity is profoundly reducing the ocean’s ability to produce seafood, resist diseases, filter pollutants, and rebound from stresses such as over fishing and climate change. The study reveals that every species lost causes a faster unraveling of the overall ecosystem. Conversely every species recovered adds significantly to overall productivity and stability of the ecosystem and its ability to withstand stresses.

“Whether we looked at tide pools or studies over the entire world’s ocean, we saw the same picture emerging,” says lead author Boris Worm of Dalhousie University. “In losing species we lose the productivity and stability of entire ecosystems. I was shocked and disturbed by how consistent these trends are - beyond anything we suspected.”

The four-year analysis is the first to examine all existing data on ocean species and ecosystems, synthesizing historical, experimental, fisheries, and observational datasets to understand the importance of biodiversity at the global scale.

The results reveal global trends that mirror what scientists have observed at smaller scales, and they prove that progressive biodiversity loss not only impairs the ability of oceans to feed a growing human population, but also sabotages the stability of marine environments and their ability to recover from stresses. Every species matters.

“For generations, people have admired the denizens of the sea for their size, ferocity, strength or beauty. But as this study shows, the animals and plants that inhabit the sea are not merely embellishments to be wondered at,” says Callum Roberts, a Professor at the University of York, who was not involved in the study. “They are essential to the health of the oceans and the well-being of human society.”

“This analysis provides the best documentation I have ever seen regarding biodiversity’s value,” adds Peter Kareiva, a former Brown University professor and US government fisheries manager who now lead science efforts at The Nature Conservancy. “There is no way the world will protect biodiversity without this type of compelling data demonstrating the economic value of biodiversity.”

The good news is that the data show that ocean ecosystems still hold great ability to rebound. However, the current global trend is a serious concern: it projects the collapse of all species of wild seafood that are currently fished by the year 2050 (collapse is defined as 90% depletion).

Collapses are also hastened by the decline in overall health of the ecosystem – fish rely on the clean water, prey populations and diverse habitats that are linked to higher diversity systems. This points to the need for managers to consider all species together rather than continuing with single species management.

“Unless we fundamentally change the way we manage all the oceans species together, as working ecosystems, then this century is the last century of wild seafood,” says co-author Steve Palumbi of Stanford University.

The impacts of species loss go beyond declines in seafood. Human health risks emerge as depleted coastal ecosystems become vulnerable to invasive species, disease outbreaks and noxious algal blooms.

Many of the economic activities along our coasts rely on diverse systems and the healthy waters they supply. “The ocean is a great recycler,” explains Palumbi, “It takes sewage and recycles it into nutrients, it scrubs toxins out of the water, and it produces food and turns carbon dioxide into food and oxygen.” But in order to provide these services, the ocean needs all its working parts, the millions of plant and animal species that inhabit the sea.

The strength of the study is the consistent agreement of theory, experiments and observations across widely different scales and ecosystems. The study analyzed 32 controlled experiments, observational studies from 48 marine protected areas, and global catch data from the UN’s Food and Agriculture Organization’s (FAO) database of all fish and invertebrates worldwide from 1950 to 2003. The scientists also looked at a 1000-year time series for 12 coastal regions, drawing on data from archives, fishery records, sediment cores and archeological data.

“We see an accelerating decline in coastal species over the last 1000 years, resulting in the loss of biological filter capacity, nursery habitats, and healthy fisheries,” says co-author Heike Lotze of Dalhousie University who led the historical analysis of Chesapeake Bay, San Francisco Bay, the Bay of Fundy, and the North Sea, among others.

The scientists note that a pressing question for management is whether losses can be reversed. If species have not been pushed too far down, recovery can be fast — but there is also a point of no return as seen with species like northern Atlantic cod.

Examination of protected areas worldwide show that restoration of biodiversity increased productivity four-fold in terms of catch per unit effort and made ecosystems 21% less susceptible to environmental and human caused fluctuations on average.

“The data show us it’s not too late,” says Worm. “We can turn this around. But less than one percent of the global ocean is effectively protected right now. We won’t see complete recovery in one year, but in many cases species come back more quickly than people anticipated — in three to five to ten years. And where this has been done we see immediate economic benefits.”

The buffering impact of species diversity also generates long term insurance values that must be incorporated into future economic valuation and management decisions. “Although there are short-term economic costs associated with preservation of marine biodiversity, over the long term biodiversity conservation and economic development are complementary goals,” says coauthor Ed Barbier, an economist from the University of Wyoming.

The authors conclude that restoring marine biodiversity through an ecosystem based management approach - including integrated fisheries management, pollution control, maintenance of essential habitats and creation of marine reserves - is essential to avoid serious threats to global food security, coastal water quality and ecosystem stability.

“This isn't predicted to happen, this is happening now,” says co-author Nicola Beaumont an ecological economist with the Plymouth Marine Laboratory. “If biodiversity continues to decline, the marine environment will not be able to sustain our way of life, indeed it may not be able to sustain our lives at all.”

Jessica Brown | alfa
Further information:
http://www.seaweb.org

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>