Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insect population growth likely accelerated by warmer climate

01.11.2006
Insects have proven to be highly adaptable organisms, able through evolution to cope with a variety of environmental changes, including relatively recent changes in the world's climate.

But like something out of a scary Halloween tale, new University of Washington research suggests insects' ability to adapt to warmer temperatures carries an unexpected consequence – more insects.

It appears that insect species that adapt to warmer climates also will increase their maximum rates of population growth, which UW researchers say is likely to have widespread affects on agriculture, public health and conservation.

Many studies have shown that insects readily adapt to the temperature of their environment. For example, those living in deserts easily tolerate high temperatures but are much less tolerant of cold temperatures than insects living in mountains. Now UW biology researchers have found that insect species that have adapted to warmer environments also have faster population growth rates. The research shows, in effect, that "warmer is better" for insects, said Melanie Frazier, a UW biology doctoral student.

"Enhanced population growth rates for butterflies might be a good thing, but enhanced growth rates for mosquito populations is much more dubious," said Frazier, who is lead author of the new research, published in the October edition of the journal The American Naturalist.

Co-authors are Raymond Huey, a UW biology professor, and David Berrigan, a former UW biology researcher now with the National Cancer Institute.

The findings suggest that evolutionary adaptation to climate warming will have profound ecological effects because rates of population growth eventually will alter entire ecosystems, Frazier said. In addition, key ecosystem characteristics such as species diversity and food webs are very sensitive to the population growth rates of the species living and interacting in those ecosystems.

She noted that biochemical adaptation to warmer temperature is not the only possible insect response to climate warming. Some species might evade warmer temperatures by moving to cooler habitats, or they might alter their seasonal activity patterns. Others might not be able to adapt adequately and could become extinct. But those that do adapt should have elevated rates of population growth.

"No matter which scenario plays out for a given species, local ecosystems will be profoundly altered," Frazier said.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>