Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Insect population growth likely accelerated by warmer climate

Insects have proven to be highly adaptable organisms, able through evolution to cope with a variety of environmental changes, including relatively recent changes in the world's climate.

But like something out of a scary Halloween tale, new University of Washington research suggests insects' ability to adapt to warmer temperatures carries an unexpected consequence – more insects.

It appears that insect species that adapt to warmer climates also will increase their maximum rates of population growth, which UW researchers say is likely to have widespread affects on agriculture, public health and conservation.

Many studies have shown that insects readily adapt to the temperature of their environment. For example, those living in deserts easily tolerate high temperatures but are much less tolerant of cold temperatures than insects living in mountains. Now UW biology researchers have found that insect species that have adapted to warmer environments also have faster population growth rates. The research shows, in effect, that "warmer is better" for insects, said Melanie Frazier, a UW biology doctoral student.

"Enhanced population growth rates for butterflies might be a good thing, but enhanced growth rates for mosquito populations is much more dubious," said Frazier, who is lead author of the new research, published in the October edition of the journal The American Naturalist.

Co-authors are Raymond Huey, a UW biology professor, and David Berrigan, a former UW biology researcher now with the National Cancer Institute.

The findings suggest that evolutionary adaptation to climate warming will have profound ecological effects because rates of population growth eventually will alter entire ecosystems, Frazier said. In addition, key ecosystem characteristics such as species diversity and food webs are very sensitive to the population growth rates of the species living and interacting in those ecosystems.

She noted that biochemical adaptation to warmer temperature is not the only possible insect response to climate warming. Some species might evade warmer temperatures by moving to cooler habitats, or they might alter their seasonal activity patterns. Others might not be able to adapt adequately and could become extinct. But those that do adapt should have elevated rates of population growth.

"No matter which scenario plays out for a given species, local ecosystems will be profoundly altered," Frazier said.

Vince Stricherz | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>