Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny 'housekeeper' crabs help prevent coral death in South Pacific

26.10.2006
Tiny crabs that live in South Pacific coral help to prevent the coral from dying by providing regular cleaning "services" that may be critical to the life of coral reefs around the world, according to scientists from the University of California, Santa Barbara.

The story of the relationship between the crab and the coral is described in the November 2006 issue of the journal Coral Reefs and is now available on-line. The coral provides a home and protection for the crabs. The crabs provide "housekeeping" duties for the coral, routinely "sweeping" out sediment that falls onto the coral, according to the study.

Thus the relationship between the corals and the trapeziid crabs is mutually beneficial, or symbiotic. The little crabs, measuring only a centimeter wide, make their home in branching corals like Acropora or Pocillopora. The research was done on coral reefs near the shore of the French Polynesian island of Moorea, in the South Pacific.

"Although we don't know much about these crabs, we do know that they are 'picky,' and are always tasting and exploring," said Hannah L. Stewart, first author of the paper and a postdoctoral researcher at UCSB's Marine Science Institute (MSI). "They use their front appendages to manipulate and shovel out the sediment."

Stewart said that this family of crabs is common around the world. "This relationship probably occurs all over the Pacific and is likely more ubiquitous than we know," she said. "Crabs are in corals everywhere. There are major ecological implications to this research; species of crabs that associate with corals may be more important than we realized."

She explained that coral reefs are one of the most productive and diverse ecosystems in the world. They support more than nine million species and provide a livelihood for millions of people around the globe.

The accumulation of sediment on coral tissue is known to reduce metabolic and tissue growth rates of coral, increasing the probability of bleaching and coral death. Many corals can remove some sediment from their surfaces but high sediment loads can be deadly. Predicted increases in sedimentation threaten coral reefs in many near shore areas around the world.

Coral reefs are threatened by a variety of environmental changes. For example, higher water temperatures and increased ultraviolet radiation, which are associated with climate change, are sources of widespread coral bleaching.

Changing land use patterns, caused by population increase on the coasts, are another threat because population growth increases the sediment load on coral. This is due to the higher amount of water run-off from development, deforestation with erosion, and expansion of agriculture.

The studies were conducted as part of The Moorea Coral Reef Long Term Ecological Research Site (MCR LTER), located in the complex of coral reefs and lagoons that surround the island of Moorea. Stewart performed the research with Sally Holbrook, professor and vice chair of UCSB's Department of Ecology, Evolution and Marine Biology; Russell Schmitt, a professor in the same department and the director of the MSI's Coastal Research Center; and Andrew Brooks, assistant research biologist at the MSI and deputy director of the MCR LTER. Experiments were carried out in the coral reef as well as in the laboratory.

The scientists showed the importance of trapeziid crabs by gently removing crabs from sections of the two species of branching corals on a coastal reef. This resulted in 50 to 80 percent of those corals dying in less than a month. By contrast, all corals with crabs survived. The nature of this common symbiotic relationship had not been recognized until this study. For surviving corals that lacked crabs, growth was slower, tissue bleaching was greater, and sediment load was higher. Laboratory experiments revealed that corals with crabs not only shed substantially more of the sediments deposited on coral surfaces, but also that crabs were most effective at removing grain sizes that were most damaging to coral tissues. These were the largest grains studied, those measuring two to four millimeters in width.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>