Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plans for field laboratory for CO2 storage

26.10.2006
Norway could soon have one of the world’s first field laboratories for studies of CO2 storage in bedrock.

Seven Norwegian research groups, led by the research organisation SINTEF, are to find out whether a land-based laboratory of this sort can be set up.

“Such a laboratory would supply us with knowledge more cheaply and rapidly and under better controlled conditions that we could obtain in any other way,” says chief scientist Erik Lindeberg of SINTEF Petroleum Research.

“At present, we have to study how Statoil is storing CO2 from the Sleipner field 1000 metres beneath the seabed, or BP’s storage site 2000 metres below the Algerian desert. In industrial projects such as these, we have to adapt to ongoing production conditions, and it is difficult to design experiments that can give us the measurements that we really want,” says Lindeberg.

Hunt for the right place

The seven research groups have been awarded some NOK 2 million by Gassnova, the national gas-power technology centre, to produce an estimate of what a field laboratory would cost – and to identify a suitable site: an area where scientists can inject CO2 down into sedimentary rock on land in order to study in detail how stored CO2 behaves in bedrock.

Results will help to make storage safer

Storing CO2 in bedrock means storing it permanently in the pores of porous rock types, either on land or under the seabed. This type of storage of CO2 from coal or gas-fired power stations is regarded as an important way of limiting rises in the greenhouse effect.

The planned Norwegian laboratory is part of efforts to ensure that CO2 can be safely stored in bedrock. Safe storage requires that it should be possible to predict and monitor the diffusion of CO2 under the surface with a high degree of accuracy. This in turn requires methods and tools that have been refined and calibrated via controlled experiments.

Corrective measures lead to more robust storage concepts

The greatest CO2 storage capacity is found in geological strata whose pores are filled with saltwater.

If it turns out that CO2 has started to leach out of such formations, various corrective measures will be possible. The simplest is to cut off the supply, as long as no more CO2 has already been injected than will enable the leaking gas to be absorbed by the seawater. If the worst comes to the worst, the CO2 can be brought back to the surface and re-injected in another, more secure geological formation.

Testing monitoring equipment

The idea is to use the field laboratory for studies that will demonstrate just how small CO2 leakages can be discovered with the aid of monitoring equipment.

The sooner a leak can be identified, and the smaller the amounts that can be demonstrated, the sooner will it be possible to implement corrective measures.

The laboratory will be an important arena for trialling present and future generations of equipment for demonstrating the presence of CO2. A field laboratory equipped to perform studies of this sort does not exist anywhere in the world today.

Pilot project of decisive importance

The study being financed by Gassnova is a pilot project that is intended to clear up whether – and where – it would be a practical proposition to build a laboratory of this sort, and how much it would cost. The conclusions drawn by the pilot project will be decisive in determining whether industry and the authorities will go ahead and finance such a laboratory.

Broadly-based cooperation

The pilot project is being carried out by a group of Norway’s most important geoscience research institutes: SINTEF Petroleum Research, the University of Bergen, the University of Oslo, the Institute of Energy Technology (IFE), the International Research Institute of Stavanger (IRIS), the Norwegian Institute of Water Research (NIVA) and the Norwegian Geological Survey (NGU). SINTEF is managing the pilot study.

The study will be carried out during the second half of 2006. Gassnova, which exists to promote the development of future-oriented, environmentally friendly and efficient gas power technology, is supporting the project to the tune of MNOK 2,285.

“By joining forces on a national project of this sort, we are assembling scientific breadth and top-level expertise that can help to CO2 storage take a major step ahead at national and international level,” says Svein Eggen, a senior adviser with Gassnova.

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>