Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plans for field laboratory for CO2 storage

26.10.2006
Norway could soon have one of the world’s first field laboratories for studies of CO2 storage in bedrock.

Seven Norwegian research groups, led by the research organisation SINTEF, are to find out whether a land-based laboratory of this sort can be set up.

“Such a laboratory would supply us with knowledge more cheaply and rapidly and under better controlled conditions that we could obtain in any other way,” says chief scientist Erik Lindeberg of SINTEF Petroleum Research.

“At present, we have to study how Statoil is storing CO2 from the Sleipner field 1000 metres beneath the seabed, or BP’s storage site 2000 metres below the Algerian desert. In industrial projects such as these, we have to adapt to ongoing production conditions, and it is difficult to design experiments that can give us the measurements that we really want,” says Lindeberg.

Hunt for the right place

The seven research groups have been awarded some NOK 2 million by Gassnova, the national gas-power technology centre, to produce an estimate of what a field laboratory would cost – and to identify a suitable site: an area where scientists can inject CO2 down into sedimentary rock on land in order to study in detail how stored CO2 behaves in bedrock.

Results will help to make storage safer

Storing CO2 in bedrock means storing it permanently in the pores of porous rock types, either on land or under the seabed. This type of storage of CO2 from coal or gas-fired power stations is regarded as an important way of limiting rises in the greenhouse effect.

The planned Norwegian laboratory is part of efforts to ensure that CO2 can be safely stored in bedrock. Safe storage requires that it should be possible to predict and monitor the diffusion of CO2 under the surface with a high degree of accuracy. This in turn requires methods and tools that have been refined and calibrated via controlled experiments.

Corrective measures lead to more robust storage concepts

The greatest CO2 storage capacity is found in geological strata whose pores are filled with saltwater.

If it turns out that CO2 has started to leach out of such formations, various corrective measures will be possible. The simplest is to cut off the supply, as long as no more CO2 has already been injected than will enable the leaking gas to be absorbed by the seawater. If the worst comes to the worst, the CO2 can be brought back to the surface and re-injected in another, more secure geological formation.

Testing monitoring equipment

The idea is to use the field laboratory for studies that will demonstrate just how small CO2 leakages can be discovered with the aid of monitoring equipment.

The sooner a leak can be identified, and the smaller the amounts that can be demonstrated, the sooner will it be possible to implement corrective measures.

The laboratory will be an important arena for trialling present and future generations of equipment for demonstrating the presence of CO2. A field laboratory equipped to perform studies of this sort does not exist anywhere in the world today.

Pilot project of decisive importance

The study being financed by Gassnova is a pilot project that is intended to clear up whether – and where – it would be a practical proposition to build a laboratory of this sort, and how much it would cost. The conclusions drawn by the pilot project will be decisive in determining whether industry and the authorities will go ahead and finance such a laboratory.

Broadly-based cooperation

The pilot project is being carried out by a group of Norway’s most important geoscience research institutes: SINTEF Petroleum Research, the University of Bergen, the University of Oslo, the Institute of Energy Technology (IFE), the International Research Institute of Stavanger (IRIS), the Norwegian Institute of Water Research (NIVA) and the Norwegian Geological Survey (NGU). SINTEF is managing the pilot study.

The study will be carried out during the second half of 2006. Gassnova, which exists to promote the development of future-oriented, environmentally friendly and efficient gas power technology, is supporting the project to the tune of MNOK 2,285.

“By joining forces on a national project of this sort, we are assembling scientific breadth and top-level expertise that can help to CO2 storage take a major step ahead at national and international level,” says Svein Eggen, a senior adviser with Gassnova.

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>