Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plutonium or greenhouse gases? Weighing the energy options

24.10.2006
Can nuclear energy save us from global warming? Perhaps, but the tradeoffs involved are sobering: thousands of metric tons of nuclear waste generated each year and a greatly increased risk of nuclear weapons proliferation or diversion of nuclear material into terrorists' hands.

So concludes University of Michigan professor Rodney Ewing, who has analyzed just how much nuclear power would need to be produced to significantly reduce greenhouse gas emissions worldwide, and the implications of the associated increase in nuclear power plants. Ewing will present his findings Oct. 23 as the Michel T. Halbouty Distinguished Lecturer at the annual meeting of the Geological Society of America in Philadelphia.

"Usually when people talk about nuclear power as a solution for global warming, the issues of nuclear waste and weapons proliferation are footnotes in the discussion," said Ewing, who is the Donald R. Peacor Collegiate Professor and Chair in the U-M Department of Geological Sciences and also has faculty appointments in the departments of Nuclear Engineering & Radiological Sciences and Materials Science & Engineering. "I think we have to find a way to consider the complete picture when choosing among energy sources."

In an effort to capture that complete picture, Ewing compared carbon-based fossil fuels with nuclear power, considering not only the technologies involved but also the environmental impacts. Similar comparisons have been made between different energy-producing systems, "but in the case of nuclear power, such an analysis is difficult because there are different types of nuclear reactors and there is not a single nuclear fuel cycle, but rather many variants, with different strategies for reprocessing and disposing of nuclear wastes," Ewing said.

His presentation, which considers various fuel cycles, shows that nuclear power generation would need to increase by a factor of three to ten over current levels to have a significant impact on greenhouse gas emissions. "We currently have 400-plus nuclear reactors operating worldwide, and we would need something like 3,500 nuclear power plants," Ewing said.

Developing the necessary nuclear technologies and building the additional power plants is an enormous undertaking that probably would take longer than the 50 years that experts say we have in which to come up with solutions to global warming, Ewing said.

Even if they could be built and brought online quickly, that many power plants would generate tens of thousands of metric tons of additional nuclear waste annually. "The amount that would be created each year would be equal to the present capacity anticipated at the repository at Yucca Mountain," Ewing said, referring to the proposed disposal site in Nevada that has been under study for more than two decades. Ewing recently co-edited a book, "Uncertainty Underground," that reviews uncertainties in the analysis of the long-term performance of the Yucca Mountain repository.

Plutonium created as a byproduct of nuclear power generation also is a concern because of its potential for use in nuclear weapons.

"Not everyone thinks this way, but I consider the explosion of a nuclear weapon to be a pretty large environmental impact with global implications," Ewing said. "A typical nuclear weapon will kill many, many hundreds of thousands of people, and the global impact would be comparable to something like Chernobyl in the spread of fallout."

So the real question, said Ewing, is: "Plutonium versus carbon---which would you rather have as your problem? I don't have the answer, but the points I'm raising are ones I think people need to be considering."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu
http://www.geosociety.org/

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>