Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plutonium or greenhouse gases? Weighing the energy options

24.10.2006
Can nuclear energy save us from global warming? Perhaps, but the tradeoffs involved are sobering: thousands of metric tons of nuclear waste generated each year and a greatly increased risk of nuclear weapons proliferation or diversion of nuclear material into terrorists' hands.

So concludes University of Michigan professor Rodney Ewing, who has analyzed just how much nuclear power would need to be produced to significantly reduce greenhouse gas emissions worldwide, and the implications of the associated increase in nuclear power plants. Ewing will present his findings Oct. 23 as the Michel T. Halbouty Distinguished Lecturer at the annual meeting of the Geological Society of America in Philadelphia.

"Usually when people talk about nuclear power as a solution for global warming, the issues of nuclear waste and weapons proliferation are footnotes in the discussion," said Ewing, who is the Donald R. Peacor Collegiate Professor and Chair in the U-M Department of Geological Sciences and also has faculty appointments in the departments of Nuclear Engineering & Radiological Sciences and Materials Science & Engineering. "I think we have to find a way to consider the complete picture when choosing among energy sources."

In an effort to capture that complete picture, Ewing compared carbon-based fossil fuels with nuclear power, considering not only the technologies involved but also the environmental impacts. Similar comparisons have been made between different energy-producing systems, "but in the case of nuclear power, such an analysis is difficult because there are different types of nuclear reactors and there is not a single nuclear fuel cycle, but rather many variants, with different strategies for reprocessing and disposing of nuclear wastes," Ewing said.

His presentation, which considers various fuel cycles, shows that nuclear power generation would need to increase by a factor of three to ten over current levels to have a significant impact on greenhouse gas emissions. "We currently have 400-plus nuclear reactors operating worldwide, and we would need something like 3,500 nuclear power plants," Ewing said.

Developing the necessary nuclear technologies and building the additional power plants is an enormous undertaking that probably would take longer than the 50 years that experts say we have in which to come up with solutions to global warming, Ewing said.

Even if they could be built and brought online quickly, that many power plants would generate tens of thousands of metric tons of additional nuclear waste annually. "The amount that would be created each year would be equal to the present capacity anticipated at the repository at Yucca Mountain," Ewing said, referring to the proposed disposal site in Nevada that has been under study for more than two decades. Ewing recently co-edited a book, "Uncertainty Underground," that reviews uncertainties in the analysis of the long-term performance of the Yucca Mountain repository.

Plutonium created as a byproduct of nuclear power generation also is a concern because of its potential for use in nuclear weapons.

"Not everyone thinks this way, but I consider the explosion of a nuclear weapon to be a pretty large environmental impact with global implications," Ewing said. "A typical nuclear weapon will kill many, many hundreds of thousands of people, and the global impact would be comparable to something like Chernobyl in the spread of fallout."

So the real question, said Ewing, is: "Plutonium versus carbon---which would you rather have as your problem? I don't have the answer, but the points I'm raising are ones I think people need to be considering."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu
http://www.geosociety.org/

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>