Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dragon training in China focuses on atmosphere

23.10.2006
Fifty-five doctoral level Chinese scientists from 30 institutes have gathered at the prestigious Peking University in Beijing in the People’s Republic of China to attend a six-day advanced training course devoted to atmosphere monitoring over China using ESA remote sensing instruments.

ESA and the National Remote Sensing Centre of China (NRSCC) are sponsoring the course under the framework of the Dragon Programme – a wide-ranging research initiative designed to encourage increased exploitation of ESA remote sensing satellite data within China as well as stimulate increased scientific co-operation in the field of Earth Observation (EO) science and applications between China and Europe.

"International cooperation and coordination are needed to sustain Earth Observation systems. Access to and use of data and products obtained from satellites and ground-based observations require transfer of know-how to the young generation of scientists emerging in many countries and worrying about the endangered Earth and its future," Prof. Paul Simon from the Belgian Institute for Space Aeronomy (IASB) said. "Advanced training courses such as the Dragon ones are an important tool to adequately address this challenge at the beginning of the 21st century."

"With the Dragon training, European atmospheric scientists and young Chinese researchers have an excellent opportunity to exchange their scientific concepts, share experiences and establish new cooperation while making extensive use of satellite data," Prof. Hendrik Elbern of the Rhenish Institute of Environmental Research at the University of Cologne said.

The course, being held from 16 to 21 October, is aimed at teaching the students about the different atmospheric instruments aboard ESA’s Envisat and ERS-2 satellites and training the students to apply tools and use the complementary atmospheric data sets for applications like air pollution monitoring, ozone trend monitoring and stratospheric and mesospheric research.

"The Advanced training course in atmosphere remote sensing of the ESA-MOST Dragon Programme is an excellent chance for me to get access to the latest information, to acquire new knowledge and to master advantageous tools for atmosphere remote sensing," HU Zhowei, a student from Capital Normal University, said.

Space-based sensors are a very good way to carry out effective global and regional monitoring of the atmosphere and are especially useful tools for analysing trends and seasonal variations in atmospheric gases.

The Global Ozone Monitoring by Occultation of Stars (GOMOS), Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) instruments aboard Envisat have significantly enriched the scope of observational capabilities by making use of a variety of novel measurement techniques and enhanced spectral coverage.

These instruments also represent a continuation of the Global Ozone Monitoring Experiment (GOME) instrument aboard ERS-2. Together, these data give users unprecedented insight into the atmosphere’s chemical and physical processes.

Five key European scientists, who have been involved in defining these instruments, algorithms and applications development, will present information on retrieval techniques, validation, models and data assimilation.

This year’s course is the third advanced training course in China since 2004. In October 2004, an advanced training course in ocean remote sensing was successfully held at the Ocean University of China, Qingdao. In October 2005, a six-day training course in land remote sensing was organised at the Capital Normal University in Beijing, which was attended by over 100 Chinese scientists. By the end of this course, nearly 250 Chinese scientists will have received training on ESA instruments and applications.

Satellite instruments in spotlight

The GOME instrument, launched aboard ERS-2 in April 1995, has enabled scientists to make long-term measurements of ozone. Data from the GOME instrument show how the ozone in the Earth's atmosphere changes with time. A key feature of GOME is its ability to detect other chemically active atmospheric trace-gases as well as aerosol distribution. ESA has been delivering GOME global observations of total ozone, nitrogen dioxide and related cloud information to users via CD-ROM and the Internet since 1996.

SCIAMACHY can identify multiple trace gases including the pollutant nitrogen dioxide created artificially by vehicle exhausts, fossil fuel burning and heavy industry. SCIAMACHY results tallied with previous results gathered by GOME showed a steady increase in nitrogen dioxide levels in industrialised eastern China.

GOMOS is an ESA instrument aimed at ozone monitoring by measuring occultation of stars. It provides altitude-resolved global ozone mapping and trend monitoring with very high accuracy, as needed for the understanding of ozone chemistry and for model validation.

MIPAS is a Michelson interferometer that detects the Earth’s limb emission in the mid-infrared. MIPAS provides accurate vertical profiles of atmospheric temperature and a number of key trace gases and covers a height range from the upper troposphere to the lower mesosphere.

Dragon Programme highlights

In addition to organising training courses, the Dragon Programme brings Sino-European teams to work together and to report on the progress and results of each project. In July 2006, these teams met in Lijiang city in the Yunnan Province of the People’s Republic of China to present their findings at the third annual five-day Dragon Symposium.

There are currently 16 Dragon projects including agricultural and forest monitoring, water resource assessment, atmospheric chemistry, terrain measurement, the ocean environment and climate change, among others. The joint Sino-European teams are led by Chinese and European lead investigators.

Earth-observing satellites are particularly useful for tackling and monitoring environmental phenomena in China, the third largest country in the world, because of the country’s sheer size and various types of terrain, which range from Himalayan peaks to tropical lowlands.

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMAX6O7BTE_planet_0.html

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>