Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligent sensors gear up for real-time flood monitoring

19.10.2006
An intelligent flood monitoring system that could give advance warning of the type of rapid flood that engulfed the UK Cornish village of Boscastle in 2004, is under test in the Yorkshire Dales. Danny Hughes, Phil Greenwood and colleagues from Lancaster University won an award for their paper describing the system at the UK e-Science All Hands Meeting in Nottingham last month.

The system, which makes use of grid computing, could reduce the cost of flood damage by providing warnings of local flooding in time for people to take pre-emptive action. Most current systems issue general warnings over large areas because they rely on sparsely-distributed sensors which send information to a central point for analysis. The new system, which is based on a network of intelligent sensors that can be placed in flood-prone sites, promises rapid, low-cost warnings specific to these sites.

Professor Paul Watson, from Newcastle University who chaired the AHM programme committee said: "we were impressed with the way in which the UK e-Science Programme has encouraged the formation of a multi-disciplinary team to address an interesting problem of great practical importance to the population as a whole; flooding is a major concern in the UK and many other countries. By making advances in a set of scientific fields and then combining the results, the team has built a novel and interesting new system".

The system now undergoing trial in Yorkshire consists of 13 depth sensors fixed in locations across a flood plain and a digital camera which rather like a traffic speed camera, monitors flow rate from the speed of flotsam between two points. Each sensor incorporates a powerful computer, no bigger than a packet of gum, which communicates wirelessly with other sensors in the network to form a computing grid. The software that enables the sensors to operate as a grid has been developed under the UK e-Science Core Programme (Open Overlays project). The North-West Development Agency is funding the flood monitoring work.

When flood waters are rising, the sensors can change how they operate together so that the network can continue to monitor the situation even if some sensors are submerged or swept away. The sensors are also able to adjust their power consumption so batteries are conserved during dry times and power is available for increased activity during flood. "As soon as the sensors detect water coming down the valley, the network gears up," says Danny Hughes.

In order to provide flood warnings, the system makes use of flood forecasting models which were developed at Lancaster by Professor Peter Young and colleagues. The models can be run on the sensor computing grid and adjusted so that their predictions stay in line with what the sensors are recording. "An interesting possibility is to use such a local warning system to give advanced warning, even in catchments where the response to rainfall is very fast, making flood forecasting very difficult," suggests Professor Keith Beven of Lancaster who is also involved in the project. "An example was the Boscastle flood in 2004, where a general forecast of heavy rain was issued, but the event was too localised to be able to give a warning to Boscastle residents. Fortunately, nobody was killed in that event," he says.

Judy Redfearn | alfa
Further information:
http://www.esrc.ac.uk
http://www.epsrc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>