Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atmosphere and Oceans Finely Balanced

24.01.2002


The atmosphere and oceans exist in a delicate state of balance according to research co-ordinated by the University of East Anglia (UEA) and published this month by the Natural Environment Research Council (NERC).



The recently completed five year research programme of Atmospheric Chemistry Studies in the Oceanic Environment (ACSOE) concludes that atmospheric pollution travels much further than previously thought and that this has important consequences for global chemistry and climate.

"The programme found that atmospheric chemicals interact with the ocean web of life in a profound way, such as gases being emitted that help regulate atmospheric conditions and the supply of essential elements such as selenium transported from the oceans to the land," said Dr Bill Sturges of UEA’s School of Environmental Sciences, the research programme’s Project Manager.


Chemical processes associated with cloud formation and distribution were found to be much more affected by pollution than previously thought and these findings will be important in ensuring that global climate models are as up to date and accurate as possible.

One of the projects carried out as part of the ACSOE programme investigated how trace metals are carried off the European continent by south-easterly winds and are deposited in the north-east Atlantic Ocean.

"Even though the predominant airflow over the north-east Atlantic is relatively clean and westerly, when south-easterly wind does occur it brings with it significant amounts of manmade trace metal pollution - manganese, lead and zinc - which has been picked up over Europe’s heavily populated and industrial regions," said Dr Lucinda Spokes of UEA’s School of Environmental Sciences.

"These pollutants, which travel hundreds of miles, have an important impact on the marine plant life when they are deposited in the ocean. Some act as nutrients for marine plants known as phytoplankton, while others are highly toxic to them."

The ACSOE programme carried out research in three main areas:
  • air-sea exchange, for example gases produced by marine microorganisms;
  • the chemistry responsible for ‘cleansing’ the lower atmosphere of pollutants; and
  • development of clouds and fine airborne particles, or aerosols, in European air during transport over the Atlantic Ocean.


Further research is needed to improve scientific understanding of the intricate relationships between air quality, ocean productivity, climate and indeed human health.

The complete programme findings and conclusions are published this month in ACSOE: Achievements and Scientific Highlights.

Mary Pallister | alphagalileo
Further information:
http://www.badc.rl.ac.uk/data/acsoe

More articles from Ecology, The Environment and Conservation:

nachricht Making Oceans Plastic Free - Project tackles the problem of plastic pollution in the oceans
31.05.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Nitrogen Oxides Emissions: Traffic Dramatically Underestimated as Major Polluter
31.05.2017 | Universität Innsbruck

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>