Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Special chip provides better picture of salmon health

17.10.2006
How do you tell if a fish is fit and well? This is a question which has troubled farmers and biologists for years, but now scientists may have come up with the answer - using DNA chips.

By studying the genes of Atlantic salmon scientists from three UK universities are developing a DNA chip to monitor the health and performance of salmon, a tool which could both save the salmon industry thousands and also help conserve dwindling wild salmon populations.

Atlantic salmon are the most important farmed fish in the UK and a disappearing species in the wild. They are particularly vulnerable to infection because of the dramatic physical and chemical changes they go through, known as smoltification, which enable them to live in both fresh and salt water.

Assessing their health and performance is very difficult as conventional measures used in other animals, such as temperature, blood protein levels and general demeanour, are not relevant or are difficult to assess in fish.

Farmers and conservationists currently have to rely on the general appearance of salmon as an indicator of their health, which is far from ideal. The new DNA chip will help farmers assess the state of their stock more accurately and also enable conservationists to sample wild populations to ascertain their health and wellbeing.

The development of the chip is the culmination of a four-year study known as Salmon TRAITS (Transcription Analysis of Important Traits in Salmon) being carried out by scientists at the Universities of Stirling, Aberdeen and Cardiff, together with ARK Genomics at the Roslin Institute and researchers at the Norwegian School of Veterinary Science. Funding for the project is from the Biotechnology and Biological Sciences Research Council’s (BBSRC) Exploiting Genomics initiative.

To develop a more effective method of monitoring salmon health and performance the scientists have been studying salmon gene expression. By doing this, they have identified genes which play different roles in the lifecycle of salmon, for example immune response.

Professor Chris Secombes lead researcher from the University of Aberdeen explained: “We have identified hundreds of genes which are increased or decreased following infection, many of which may be indicators of disease. We have also looked at what other factors impact on these genes, such as nutrition. We are now working to encode this information onto a chip which could help farmers monitor the health and performance of their stocks through methods such as changing their nutritional intake.”

So far the scientists have identified the genes and metabolic pathways which influence the most commercially important traits for the production of salmon. These are; the supply of contaminant-free highly unsaturated oils, including omega-3s, for the salmon diet, their long and complex lifecycle, infectious disease, and protein growth efficiency.

Professor Alan Teale, lead researcher at the Institute of Aquaculture at the University of Stirling and Co-ordinator of TRAITS explained: “What we are working on is precision aquaculture, where we use very sensitive measures – gene expression – to pre-empt any adverse production changes in farmed fish populations as well as to maximise their health and wellbeing. This in turn will increase competitiveness and profitability for the salmon farmer.

“We have identified genes involved in polyunsaturated fatty acid metabolism, protein metabolism, bacterial and viral infection, and freshwater to seawater adaptation. The DNA chip will be able to identify changes in the activity of these genes and so alert us to any potential problems. It is too early to tell whether this chip will be a commercial success, but it certainly has the potential to be extremely useful to industry,” Professor Teale said.

Professor Julia Goodfellow, BBSRC Chief Executive, said: “This is another important step forward in genomics research, not only does it further our knowledge base, it also offers tangible benefits for the aquaculture industry and for the conservation of wild salmon, offering the chance to reverse the decline in Britain’s salmon population.”

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>