Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Special chip provides better picture of salmon health

17.10.2006
How do you tell if a fish is fit and well? This is a question which has troubled farmers and biologists for years, but now scientists may have come up with the answer - using DNA chips.

By studying the genes of Atlantic salmon scientists from three UK universities are developing a DNA chip to monitor the health and performance of salmon, a tool which could both save the salmon industry thousands and also help conserve dwindling wild salmon populations.

Atlantic salmon are the most important farmed fish in the UK and a disappearing species in the wild. They are particularly vulnerable to infection because of the dramatic physical and chemical changes they go through, known as smoltification, which enable them to live in both fresh and salt water.

Assessing their health and performance is very difficult as conventional measures used in other animals, such as temperature, blood protein levels and general demeanour, are not relevant or are difficult to assess in fish.

Farmers and conservationists currently have to rely on the general appearance of salmon as an indicator of their health, which is far from ideal. The new DNA chip will help farmers assess the state of their stock more accurately and also enable conservationists to sample wild populations to ascertain their health and wellbeing.

The development of the chip is the culmination of a four-year study known as Salmon TRAITS (Transcription Analysis of Important Traits in Salmon) being carried out by scientists at the Universities of Stirling, Aberdeen and Cardiff, together with ARK Genomics at the Roslin Institute and researchers at the Norwegian School of Veterinary Science. Funding for the project is from the Biotechnology and Biological Sciences Research Council’s (BBSRC) Exploiting Genomics initiative.

To develop a more effective method of monitoring salmon health and performance the scientists have been studying salmon gene expression. By doing this, they have identified genes which play different roles in the lifecycle of salmon, for example immune response.

Professor Chris Secombes lead researcher from the University of Aberdeen explained: “We have identified hundreds of genes which are increased or decreased following infection, many of which may be indicators of disease. We have also looked at what other factors impact on these genes, such as nutrition. We are now working to encode this information onto a chip which could help farmers monitor the health and performance of their stocks through methods such as changing their nutritional intake.”

So far the scientists have identified the genes and metabolic pathways which influence the most commercially important traits for the production of salmon. These are; the supply of contaminant-free highly unsaturated oils, including omega-3s, for the salmon diet, their long and complex lifecycle, infectious disease, and protein growth efficiency.

Professor Alan Teale, lead researcher at the Institute of Aquaculture at the University of Stirling and Co-ordinator of TRAITS explained: “What we are working on is precision aquaculture, where we use very sensitive measures – gene expression – to pre-empt any adverse production changes in farmed fish populations as well as to maximise their health and wellbeing. This in turn will increase competitiveness and profitability for the salmon farmer.

“We have identified genes involved in polyunsaturated fatty acid metabolism, protein metabolism, bacterial and viral infection, and freshwater to seawater adaptation. The DNA chip will be able to identify changes in the activity of these genes and so alert us to any potential problems. It is too early to tell whether this chip will be a commercial success, but it certainly has the potential to be extremely useful to industry,” Professor Teale said.

Professor Julia Goodfellow, BBSRC Chief Executive, said: “This is another important step forward in genomics research, not only does it further our knowledge base, it also offers tangible benefits for the aquaculture industry and for the conservation of wild salmon, offering the chance to reverse the decline in Britain’s salmon population.”

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>