Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean forests prompt pollution rethink

24.01.2002


Nitrogen in unpolluted streams is more organic.
© Nature


Agriculture has added to the natural nitrogen cycle.
© Photodisc


South American streams call current nitrogen-cycle theory into question.

Pollution may have altered northern hemisphere forests dramatically. The surprise finding that clean forests use nitrogen differently to polluted ones emphasizes the effect that humans have on the planet’s nitrogen cycle1. It may even prompt a rethink of the way that this cycle works.

Humans have added vast amounts of nitrogen to the earth’s ecosystems. The element fertilizes plants. To understand what affect this has had already, and how the planet might fare in the future, we need to know how forests used nitrogen before this artificial influx began.



So Steven Perakis and Lars Hedin, ecologists at Cornell University, Ithaca, New York, searched the globe for an environment with as little nitrogen pollution as possible. They settled on 100 streams in temperate forests in Chile and Argentina, far from industry.

They found that more than three-quarters of the nitrogen in these streams is organic (combined with carbon). Nitrogen from pollution is overwhelmingly inorganic - chemically bound to oxygen, hydrogen or metals.

Over 70% of the nitrogen in woodland rivers in Europe and North America is in the form of inorganic nitrate. But in the 100 South American streams, nitrate was the least abundant form of the element, at only 5%.

So it looks as if northern nitrate is a legacy of human activity. "People have had an even greater effect than we thought," says Perakis.

"It’s an amazingly powerful message," says ecosystems researcher Knute Nadelhoffer of the Marine Biological Laboratory at Woods Hole, Massachusetts. "It changes the way we think about the nitrogen baseline in pristine environments."

It’s a good reminder of how much pollution has altered northern ecosystems, comments Bridget Emmett, who studies nitrogen pollution at the Centre for Ecology and Hydrology in Bangor, Wales. "Whether the baseline in Chile is the same as the baseline would have been in northern systems is debatable," she cautions.

Cycle path

Nitrogen makes up about 80% of the air, but only a few bacteria can turn the gas into a form that plants can use.

Over the past century, nitrate fertilizers and nitric oxides emitted from the burning of fossil fuels have roughly doubled the amount of nitrogen available to the biosphere. And farmers are still adding nitrogen to the land, particularly in developing countries.

Plants and microbes have taken up most of the slack. But large quantities of nitrogen are still washed into rivers and the sea, either because the element is not used or because it is released through death or leaf fall.

In many freshwater, estuarine and coastal environments, such as the Gulf of Mexico, this fertilization has changed the range of plants and animals that live there. Nitrogen-loving species swamp others more suited to poorer conditions (the same thing happens in a fertilized lawn). The extra nitrogen can also feed suffocating blooms of algae.

We need to think about nitrogen emissions in the same way that we consider the influence of sulphur on acid rain, or carbon on the climate, says Nadelhoffer.

"We have perturbed the nitrogen cycle much more than the carbon cycle," he says. "Most forests are still retaining more nitrogen than they release. The question is how much they can retain and for how long."

The theory that seeks to answer these questions currently hinges on nitrate. The new finding might force a rethink. "It seems that our models might be biased," Perakis concludes.

References

  1. Perakis, S. S. & Hedin, L. O. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature, 415, 416 - 419, (2002).


JOHN WHITFIELD | © Nature News Service
Further information:
http://www.nature.com/nsu/020121/020121-10.html

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>