Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harvesting Machine Driving Mesquite-to-Ethanol Potential

13.10.2006
Knocking down mesquite hasn't been a problem in the past. Picking it up and getting it off the land has, said a Texas Agricultural Experiment Station researcher.

That will change with a new mesquite harvester for use in wood-to-ethanol production, said Dr. Jim Ansley, Experiment Station rangeland ecologist.

The only one of these machines in existence was demonstrated at the 2006 Range and Wildlife Field Day on Oct. 5 in Vernon.

But Ansley said it won't be the only one for long with commercial production expected soon.

A combination of the U.S.'s dependency on foreign oil and a growing problem for producers with brush encroachment, which reduces grasses and production and water availability, has driven his recent work.

"We're emphasizing mesquite and we're targeting ethanol conversion, although there are other bioconversions that could take place," Ansley said.

He said there are an estimated 51 million acres of mesquite in Texas, with 30 million acres of moderate to dense mesquite in Central Texas.

Mesquite is drought hardy, fixes its own nitrogen, requires no seeding, fertilization or irrigation, resprouts vigorously after topkill and grows on dry, nutrient-poor soils, he said. Finding a profitable use for it is a win-win situation.

For the past year and a half, Ansley has been working with private industry to build the harvester prototype. The prototype is owned by the Experiment Station and a joint patent is pending, Ansley said.

The patent and commercial production will be carried through Brush Unlimited and Richard Frailey of Altus, Okla. Ansley said he and Frailey already have been contacted by several people in Texas, New Mexico and Oklahoma who have expressed interest in buying the machines. No commercial price has been established.

A conventional brush-cutting machine such as the Barko 775C or HydroAxe is used to fell or rough cut the trees. These brush cutters have a large rotor in front with what are called hammers on it to knock down the brush.

The new harvesting machine is not self-powered and is pulled through the felled trees with the HydroAxe, Ansley said. It is powered by the HydroAxe with a hydraulic system. With another rotor and more hammers, the felled wood is further broken up and then sucked up a chute and into a hydraulically hinged bin.

From there, the wood can be dumped into trucks and hauled to an ethanol plant, where it would be further ground into a sawdust and entered into the ethanol-production system, he said.

"The Experiment Station didn't have a brush-cutting machine, so that is why we went to cooperative efforts with private industry," he said. "It has taken the involvement of many people to make this happen and represents a good example of university researchers and the private sector working together."

The initial vision for a mesquite harvester was that of Montey Sneed with Texas Ethanol Company of Vernon and Ansley's, he said. Frailey was brought in, along with Larry and John Willis of W.W. Welding in Altus, Okla., to help design and build the machine.

The final step was finding an end market. That involved Pearson BioEnergy Inc. in Aberdeen, Miss., a company that has been developing a process, not yet commercially available, for converting wood to ethanol.

Funding for the project has been provided by a grant from the DOE-State Energy Conservation Office, along with funding from Pearson BioEnergy and the Experiment Station.

Ansley also recently began working with Cameron University in Lawton, Okla., which received a grant from the state of Oklahoma to look at mesquite as an alternative fuel in southwestern Oklahoma.

"To develop this industry, there are supply, harvest, conversion and ecological issues," Ansley said. "Here, we're looking at cutting, collecting, baling and transporting the mesquite feedstock."

The new machine was designed for a commercial-size ethanol plant, with the capability to harvest 5 to 10 acres a day, Ansley said, but it doesn't have to be limited to mesquite harvest.

A smaller version could be used for roadside cleanup or a producer may want to use it as a shredder and a way to remove the debris and thorns from the pasture, he said.

Mesquite is not totally removed, so regrowth will occur, Ansley said. That is important to the mesquite-to-ethanol program. He estimates that in North Texas, at least 10 years of regrowth is needed before mesquite can be harvested again.

His studies show each 10- to 12-year-old regrowth tree has about100 to 120 pounds of wood. Thus, an estimated 300 trees per acre would produce about 30,000 pounds or 15 tons per acre.

The concept of harvesting mesquite as a biofuel has been around since the 1970s, Ansley said. There have been unsuccessful attempts in the past to build machines designed to cut and collect the mesquite all in one machine.

"Our theory is that is too much for one machine to do," he said.

Dr. Jim Ansley | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>