Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop contaminant warning program for EPA to monitor water systems in real time

12.10.2006
Sandia National Laboratories researchers are working with the U.S. Environmental Protection Agency (EPA), University of Cincinnati and Argonne National Laboratory to develop contaminant warning systems that can monitor municipal water systems to determine quickly when and where a contamination occurs.

It's all part of the EPA's Threat Ensemble Vulnerability Assessment (TEVA) program to counter threats against water systems. The program uses a computational framework containing a suite of software tools that can simulate threats and identify vulnerabilities in drinking water systems, measure potential public health impacts, and evaluate mitigation and response strategies.

The EPA became particularly concerned about potential water system contamination after the Sept. 11, 2001 attacks on Washington, D.C. and New York.

U.S. water systems consist of large networks of storage tanks, valves, and pipes that transport clean water to customers over vast areas. By the very nature of their design, they provide multiple points for potential contamination -- either accidental or intentional.

Sandia is a National Nuclear Security Administration laboratory.

"Our involvement dates back about three years ago when the EPA became aware of some LDRD [internally-funded Laboratory Directed Research and Development program] research we were doing to model threat assessments to water systems," says Sean McKenna, Sandia project researcher. "We started working with the EPA in March 2003."

During the ensuing three years, the collaborative team created world-class software to address water security issues. The software can aid in the placement of sensors during the design stage of a contaminant warning system. It can also determine when and where a contamination event happens, track changes, and determine when the event is over.

"Through careful adaptation of classical algorithms, we are able to solve sensor placement problems on networks that are 100 times larger than those previously cited in the water security literature," says Jon Berry, who works on sensor placement methods for the project. "Our team recognized and exploited mathematical structure that hadn't been associated with water security before."

Bill Hart, Sandia project lead, says the software "helped the EPA meet several internal milestones over the past year," including developing a contaminant incident timeline for the EPA's WaterSentinel program and working with a large city water utility to determine the best locations for sensor placement. The WaterSentinel Program is being developed in partnership with select cities and laboratories in response to a Homeland Security Presidential Directive that charges the EPA to develop surveillance and monitoring systems to provide early detection of water contamination.

The EPA will test Sandia's event detection methods later this summer at a large water system.

"These tests [that the EPA will conduct] will assess the event detection methods so that we can better understand how to respond more intelligently to contaminations as they occur," Hart says.

Sandia is also leveraging this project with another research project funded by the American Water Works Association Research Foundation to develop a sensor simulator that offers a more complete understanding of how contaminant warning systems may ultimately function when operated in water distribution systems. Sandia researchers are developing a software algorithm that mimics the performance of water quality sensors in common use today.

Sensor characteristics such as noise, drift, and sampling frequency are incorporated into a user-friendly software module that enables system designers to assess on-line data signals for event detection that also take into account imperfect sensors and changing water quality baselines that are encountered during routine system operation.

The event detection methods and its sensor simulator have been specifically tailored for use with a variety of affordable, off-the-shelf sensors commonly used by water utilities to monitor water quality.

Chris Burroughs | EurekAlert!
Further information:
http://www.sandia.gov
http://www.sandia.gov/news/resources/releases/2006/teva.html

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>