Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Four strong research environments receive SEK 700 million in funding

06.10.2006
Four strong research environments in Stockholm, Uppsala, and Umeå will be the first Berzelii Centers in Sweden.

They are to pursue outstanding basic research and have an expressed ambition to develop their collaboration with the business community and the public sector in order ultimately to exploit their research in commercial applications. The funding is given for up to ten years.

From the 22 proposals received, the first four Berzelii Centers have now been selected:

UPSC Center for Forest Biotechnology (UCFB), Swedish University of Agricultural Sciences (SLU)

Umeå Plant Science Center is a research environment that is a world leader in plant biotechnology, where internationally leading basic research is tied to the development of future products and processes in agriculture and forestry. The new center UCFB is to consolidate and further strengthen the research setting. The center is a collaborative project involving SLU, Umeå University, SweTree Technologies, Sveaskog, Holmen Skog, and Bergvik Skog. Contact: Ove Nilsson, SLU, phone: +46 90-786 84 87.

EXSELENT, Stockholm University

Activities focus on the synthesis of new functional porous materials. In collaborative work involving synthetic chemists, modelers, and structural chemists, the center is to create nanomaterials custom designed for applications in catalysis and in controlled adsorption and desorption. The center is a collaborative project between Stockholm University and the Institute for Surface Chemistry. Industrial partners are a number of companies in the pharmaceutical industry and the foodstuffs, cosmetics, and chemicals industries, including AstraZeneca, Biovitrum, Perstorp, and Nobel Biocare. Contact: Xiaodong Zou, Stockholm University, phone: +46 8-16 23 80.

Uppsala Berzelii Center for Basic and Applied Research in BioNanoTechnology, Uppsala University

The center is to pursue research on complex diseases and biotechnological methods of analysis to attain a better understanding of disorders like Alzheimer’s, ALS, Parkinson’s, pain, and drug abuse. Sophisticated laboratory equipment will be used to search for combinations of biomarkers that indicate a specific disease. This interdisciplinary collaborative project, combining research in biology, chemistry, pharmacy, materials science, and nanotechnology, will develop entirely new analytic methods for protein-based diagnostics and screening of complex disorders. The center is a collaborative effort involving Uppsala University, Akademiska University Hospital, GE Healthcare, AstraZeneca, Olink Bioscience, Affibody, and Gyros. Contact: Fredrik Nikolajeff, Uppsala University, phone: +46 18-471 30 36.

Stockholm Brain Institute Berzelii Center, Karolinska Institute

By integrating world class expertise in cognition, calculation models, and nerve research, the center is targeting an enhanced understanding of the brain. The focus is primarily on the interaction of activity, sensing, and memory in the brain. A key goal is achieve a better understanding of mechanisms underlying, and ultimately better prevention and treatment of, disorders like ADHD, dementia, and schizophrenia. Ten research teams at KI, the Royal Institute of Technology, and Stockholm University are to collaborate with the Karolinska University Hospital, CogMed, AstraZeneca, IBM, Elektra, Carlson Research, and several smaller companies. Contact: Hans Forssberg, KI, phone: +46 8-517 773 50.

Each Berzelii Center will be successively built up with funding from the Swedish Research council and VINNOVA to a level of a maximum of SEK 5 million per year from the respective financiers. Moreover, there will be co-funding from the university/college, the business community, and the public sector. The total budget for each center will be about SEK 170 million over a ten-year period, a maximum of SEK 100 million of which will be in the form of grants from the Swedish Research Council and VINNOVA.

Annakarin Svenningsson | alfa
Further information:
http://www.vr.se

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>