Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Report challenges common ecological hypothesis about species abundance

05.10.2006
A new report finds little empirical evidence to support a widely held ecological assumption that species are most abundant near the centers of their geographic ranges and decline in abundance near the ranges' edges.

"When we reviewed data from published studies that looked at species abundance at multiple sites across a range, we found almost no evidence that supported the so-called 'abundant-center hypothesis' and strong evidence that contradicted it," said Raphael D. Sagarin, associate director for oceans and coastal policy at Duke University's Nicholas Institute for Environmental Policy Solutions.

"This is troubling," Sagarin said, "because a lot of current thinking on ecological and evolutionary issues -- including how species will respond to climate change, how to identify probable locations of pest outbreaks, how genetic diversity is distributed among populations and where to locate habitat preserves -- has been based on the hypothesis."

The validity of these ideas now needs to be re-examined using empirical studies, he said.

Sagarin is one of the principal authors of the report, which appeared in the September 2006 issue of the journal Trends in Ecology and Evolution. Other authors are Steven D. Gaines of the University of California-Santa Barbara's Marine Science Institute and Department of Ecology, Evolution and Marine Biology; and Brian Gaylord of the University of California-Davis's Bodega Marine Laboratory and Section of Evolution and Ecology.

For their analysis, the authors reviewed not only published studies but also some new sets of data that they had compiled from field observations in a number of coastal locations of such invertebrate species as sea urchins, sea anemones and snails. They found that most of the studies showed that patterns of abundance were affected by a complex interplay of environmental, physical, biological, genetic and geographical factors that the abundant-center hypothesis failed to take into account.

Population clusters and high abundance sometimes occurred right at the geographic edges of the species' ranges, they found.

"Ecologists need to go back into the field and sample populations, taking advantage of new technologies that allow us to see what populations are actually like on scales not previously possible," Sagarin said. "In some way, it's a return to old-school ecology, but armed with high-tech tools we didn't have 30 years ago."

Advances in remote sensing, biophysical monitoring, ecological physiology, molecular genetics and genomics are rapidly enhancing scientists' ability to identify population and individual patterns across large spatial scales, he said. Scientists can collect data on such factors as growth rates, genetics, climate, human-caused impacts and species interactions in different parts of a population's range, and then look at the overlay of these variables and see the larger story, rather than making a simplifying assumption based on one variable.

"Theory and experimentation have their place," Sagarin said. "They can play important roles in helping us predict, in general, future changes in species' ranges due to climate change. But you need empirical field-based data to know, more specifically, how this is going to look on the ground. When a range shifts, is it going to look like the gradual arrival of a new species, or like an actual invasion? Theory alone can't tell us that."

Tim Lucas | EurekAlert!
Further information:
http://www.duke.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>