Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Report challenges common ecological hypothesis about species abundance

05.10.2006
A new report finds little empirical evidence to support a widely held ecological assumption that species are most abundant near the centers of their geographic ranges and decline in abundance near the ranges' edges.

"When we reviewed data from published studies that looked at species abundance at multiple sites across a range, we found almost no evidence that supported the so-called 'abundant-center hypothesis' and strong evidence that contradicted it," said Raphael D. Sagarin, associate director for oceans and coastal policy at Duke University's Nicholas Institute for Environmental Policy Solutions.

"This is troubling," Sagarin said, "because a lot of current thinking on ecological and evolutionary issues -- including how species will respond to climate change, how to identify probable locations of pest outbreaks, how genetic diversity is distributed among populations and where to locate habitat preserves -- has been based on the hypothesis."

The validity of these ideas now needs to be re-examined using empirical studies, he said.

Sagarin is one of the principal authors of the report, which appeared in the September 2006 issue of the journal Trends in Ecology and Evolution. Other authors are Steven D. Gaines of the University of California-Santa Barbara's Marine Science Institute and Department of Ecology, Evolution and Marine Biology; and Brian Gaylord of the University of California-Davis's Bodega Marine Laboratory and Section of Evolution and Ecology.

For their analysis, the authors reviewed not only published studies but also some new sets of data that they had compiled from field observations in a number of coastal locations of such invertebrate species as sea urchins, sea anemones and snails. They found that most of the studies showed that patterns of abundance were affected by a complex interplay of environmental, physical, biological, genetic and geographical factors that the abundant-center hypothesis failed to take into account.

Population clusters and high abundance sometimes occurred right at the geographic edges of the species' ranges, they found.

"Ecologists need to go back into the field and sample populations, taking advantage of new technologies that allow us to see what populations are actually like on scales not previously possible," Sagarin said. "In some way, it's a return to old-school ecology, but armed with high-tech tools we didn't have 30 years ago."

Advances in remote sensing, biophysical monitoring, ecological physiology, molecular genetics and genomics are rapidly enhancing scientists' ability to identify population and individual patterns across large spatial scales, he said. Scientists can collect data on such factors as growth rates, genetics, climate, human-caused impacts and species interactions in different parts of a population's range, and then look at the overlay of these variables and see the larger story, rather than making a simplifying assumption based on one variable.

"Theory and experimentation have their place," Sagarin said. "They can play important roles in helping us predict, in general, future changes in species' ranges due to climate change. But you need empirical field-based data to know, more specifically, how this is going to look on the ground. When a range shifts, is it going to look like the gradual arrival of a new species, or like an actual invasion? Theory alone can't tell us that."

Tim Lucas | EurekAlert!
Further information:
http://www.duke.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>