Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Future flooding disasters to be averted by maths

Oxford researchers have won funding to improve the usefulness of weather predictions regarding the probability and extent of extreme rainfall. This will help hydrologists, civil engineers, policy-makers and government to take appropriate measures to protect buildings and people from the devastating effects of extreme floods such that in Boscastle, Cornwall, 2004.

The new £300,000 research project at Oxford University is funded by the Natural Environment Research Council.

'What we are doing is bringing together, for the first time, three different areas of science: mathematics, supercomputer weather prediction, and historical data’, Dr Patrick McSharry at Oxford University's Department of Engineering Science said.

‘We are using advanced mathematical techniques which were originally developed for a different application. This helps us to improve the predictions we can make based on data that has already been collected. To do this we are using the vast computing power provided by new weather models. For example, there is a limit to the accuracy of data collection and tiny measurement errors can lead to increasing forecast uncertainty as you look further into the future.

'So if we can improve the mathematics to handle the uncertainty in the data and models, we can improve the accuracy of the predictions for people such as engineers and policy-makers.'

The new mathematical prediction techniques to be used in the study will be developed in collaboration with researchers at the Said Business School, who were originally looking to improve models for forecasting electricity demand.

The techniques will be used in conjunction with the output from a state-of-the-art supercomputer weather model at the European Centre for Medium-Range Weather Forecasts.

The data, on which the work will be based, will come from the largest record of historical data of UK rainfall patterns, which date back as far as 1860 when weather records were produced by amateur enthusiasts. It will be the first time that researchers will have access to this vast amount of data in electronic format. It will be made available by a specialist hydrologist at Hydro-GIS Ltd.

Dr Harvey Rodda, of Hydro-GIS said: ‘Accurate rainfall predictions are needed as part of the information used to design measures to protect houses built in areas which are most vulnerable to flooding. The connection between rain and flooding is complicated. It is not enough just to predict rainfall depth, but prediction must also say how likely rain is at any time, which means calculating the probability of rainfall. Another element is the pattern of rainfall – for example, for the severe floods in Boscastle in 2004 and those on the Thames in 2003, the causes and pattern of rainfall was different, so scientists need to know what pattern of rainfall caused the flooding.’

The research will also produce an automatic system for discovering the most likely pattern in the predicted rainfalls. The new prediction system and data will be freely available over the internet for use by hydrologists, civil engineers, government policy-makers and researchers.

Barbara Hott | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>