Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA study: Alaskan fires affected Houston air quality in 2004

25.09.2006
Innovative study looked at both satellite info and data from daily weather balloons

An innovative new NASA-funded study based on a combination of satellite data, computer models and weather balloon readings finds that smoke from Alaskan and Canadian forest fires as much as doubled ground-level ozone thousands of miles away in Houston during a two-day period in July 2004. The study, which will appear online Sept. 26 in the Journal of Geophysical Research, offers scientists a rare glimpse at the precise air-quality effects from pollutants generated thousands of miles away.

The study, conducted by researchers from Valparaiso University and Rice University, found that ozone pollution levels increased significantly in the air above Houston on July 19-20, 2004. Researchers attributed the increase in part to smoke that was transported to the area over the course of a week from forest fires raging in Alaska and Canada. The study is the first to quantitatively examine the impact of remotely generated pollutants on air quality in the lower atmosphere.

In the summer of 2004, researchers in a NASA-led field research project sampled a variety of trace gases and aerosols – tiny particles suspended in the air – across North America. That same summer, physicist Gary Morris, both an associate professor at Valpariaso and an adjunct assistant professor at Rice, launched the Tropospheric Ozone Pollution Project (TOPP) at Rice's Houston campus with funding support from both NASA and Rice's Shell Center for Sustainability. TOPP involved daily launches of weather balloons from Rice's campus south of downtown. The balloons measured ozone levels from the ground to altitudes of more than 100,000 feet, offering the first clear picture of how much ozone was present in each layer of the atmosphere above the city.

While NASA scientists and Morris were collecting their data, forest fires in western Canada and eastern Alaska were consuming more acres than at any time during the past 50 years. Meteorological conditions carried smoke from these intense fires eastward and southward to the U.S. Gulf Coast.

"The combination of our balloon-borne ozone data and observations by NASA satellites, aircraft, and a network of ground stations provided unprecedented insight into the origins of locally poor air quality in Houston on those two days," Morris said.

Houston frequently exceeds federal standards for ground-level ozone. On 52 days in 2005, Houston's air quality violated the eight-hour Environmental Protection Agency (EPA) standard for ozone, placing Houston among the worst urban areas in the U.S. for ozone pollution. Besides posing a health risk for people with respiratory problems, ground-level ozone has also been linked to increased rates of asthma among children, and it can destroy plants and reduce crop yields. Federal regulators have given the Houston-Galveston region until 2007 to comply with federal air-quality standards for ground-level ozone, under the threat of severe economic sanctions, including loss of federal highway dollars.

In the new study, Morris and colleagues relied on imagery from NASA's Moderate Resolution Imaging Spectroradiometer on the Terra satellite, aerosol data from the Total Ozone Mapping Spectrometer satellite, and carbon monoxide data from the Atmospheric Infrared Sounder on the Aqua spacecraft. They tracked an air mass from the region of forest fires in western Canada and eastern Alaska on July 12-13, 2004, and followed it as it traveled across Canada, through the mid-western United States and into the Houston area on July 19.

"We found that with the arrival of the pollutants associated with these forest fires, ozone levels increased between 50-100 percent in the first five kilometers over Houston," Morris said.

Meteorological conditions, the smoke from the distant forest fires, and the typical urban pollution generated in the Houston area provided a potent mix for increasing local ozone concentrations, he said.

Morris said it's likely that such pollution episodes will continue. Understanding the transport and transformation of gases and aerosols over long distances is needed for improved understanding and air-quality forecasting.

"This event highlights the critical role imported sources can have on local air quality," Morris said.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>