Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invasive sea squirts persist on Georges Bank

25.09.2006
For the fourth consecutive year, federal and university researchers have surveyed two areas on Georges Bank where an invasive colonial sea squirt continues to thrive on the gravel bottom. The colonies are denser than in 2005 over the 88 square-mile area observed. But scientists found no colonies in nearby Canadian waters, indicating they have not spread eastward. The Georges Bank squirts are a species of the genus Didemnum.

"The area of seabed covered by the colonies has doubled at 75 percent of the sites we observed in both 2005 and 2006," said Dr. Page Valentine of the U.S. Geological Survey, who tracks occurrences of the species off the northeastern U.S., and elsewhere in the world. Greater density of colonies observed during the survey is evidence that the infestation is persistent, and not a short-lived phenomenon.

Robert Reid, a biologist with NOAA Fisheries Service and chief scientist for the survey, agreed that the squirt appears to be proliferating in the study area. "The fact that it is still there in high abundance over a fairly large area certainly indicates this occurrence is not ephemeral," Reid said.

Scientists remain concerned that the infestation could threaten important fisheries in the region. Sea squirt mats could prevent fish from feeding on worms and crustaceans that live in and on the gravel bottom, reduce the shelter required for these species to avoid predators, and limit the space available for settlement of larvae of sea scallops and other species. Didemnum is a nuisance to the aquaculture industry, overgrowing shellfish in New England coastal waters.

Dr. Jeremy Collie, a biologist with the University of Rhode Island, has been studying the benthic communities in the area since before the sea squirts arrived, and he is monitoring the effects they are having on the benthos. "We haven't seen any dramatic changes yet, but as the percentage of the area covered by sea squirts gets higher and higher, it's going to seal off the seafloor. That's when we expect to see significant effects," he said.

As in prior years, scientists conducted the annual survey from the NOAA Ship Delaware II. Returning researchers included Valentine and Reid, and Collie. This year's survey included video transects of up to 0.8 miles in length using the USGS seabed observation and sampling system (SEABOSS). Preliminary evaluation of the images show the gravel is 50 to 75 percent covered at some study sites, a marked increase from last year.

Dawn Sephton, a biologist from the Department of Fisheries and Oceans Canada, Maritimes Region, was also part of scientific team this year, since the study included Canadian waters. Sephton currently leads a project to detect and monitor invasive sea squirt species along the Bay of Fundy and Nova Scotia coastlines. "While the absence of Didemnum at the Canadian study sites is welcome news, we are concerned about its potential spread and impact on fisheries and shellfish aquaculture in the Maritimes," Sephton said.

Sea squirts are also called tunicates, having a primitive spinal cord and an outer sheath or "tunic," from which the name derives. Tunicates spread in several ways: by larvae that swim for only a few hours before settling; by colonies that hitchhike onto surfaces such as boat hulls, moorings, fishing gear, and other manmade objects and are carried to new, favorable habitats; and by fragments of colonies that are broken up by human activities and natural events and drift until they settle elsewhere. They expand outward by budding new millimeter-sized individuals to form circular mats up to a foot in diameter. The mats coalesce with neighboring colonies to form a tough, barren layer of intergrown colonies that attach to hard surfaces including gravel, wood, metal, and plastic. No other species is known to eat or overgrow them.

Scientists first observed the Didemnum colonies in 2003, on the U.S. side of the international maritime boundary separating U.S. and Canadian waters of Georges Bank. Georges Bank is frequently fished by commercial vessels, particularly sea scallopers and ground fishermen. The same or similar species of Didemnum occur on the coasts of Europe, New England, California, Washington, British Columbia, and New Zealand. So far, this is the only occurrence reported in an offshore fishing ground.

Diane Noserale | EurekAlert!
Further information:
http://www.usgs.gov

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

Hidden talents: Converting heat into electricity with pencil and paper

20.02.2018 | Materials Sciences

Rare find from the deep sea

20.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>