Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM Satellite Tracks 2006 Hurricane Rainfall

25.09.2006
How can one know how much rain really falls over the path of a tropical storm or hurricane?

This is a question that greatly interests meteorologists and hydrologists. On their behalf, and on behalf of the public which ultimately benefits from better observations of storms, NASA scientists are using satellite data from its rain gauge in space, the Tropical Rainfall Measuring Mission or “TRMM” to help provide these measurements.

TRMM, a joint mission between NASA and JAXA, the Japanese Space Agency, was launched in 1997 to study rainfall in the tropics. Since then, researchers and forecasters have found TRMM invaluable. TRMM has provided rainfall data in places that have no rain gauges, as well as lightning data and a never before seen 3-D look into storms. That 3-D capability has also led scientists to formulate a theory on "Hot Towers," or towering clouds that form in the eyewall of a hurricane.

Currently, scientists are using TRMM data to provide a complete picture of precipitation around the entire world. Goddard scientists Bob Adler and George Huffman are compiling this information using TRMM, as well as data from NASA’s Aqua satellite, a few Department of Defense satellites, a few National Oceanic and Atmospheric Administration polar-orbit satellites, and five international geostationary-orbit satellites. Polar orbiting satellites fly over the north and south poles. Geostationary satellites are those that orbit the Earth in a fixed position over the Equator.

This combination of satellite data allows Adler and Huffman to compute how much rain has fallen over three hour periods for most of the world, not including the upper northern and lower southern hemispheres. Huffman said "Data from TRMM are key to getting the complete picture of rainfall around the world, because of the satellite's high quality sensors and special orbit." Adler and Huffman take advantage of these attributes to adjust each of the other satellite data sets to TRMM's rainfall data.

Scott Braun, a hurricane researcher at NASA's Goddard Space Flight Center, Greenbelt, Md., uses these TRMM Multi-satellite Precipitation Analysis data to create maps of rainfall accumulation along the tracks of hurricanes.

These images show the mapped rainfall for 2006's Hurricane Ernesto in the Atlantic Ocean, Super Typhoon Ioke in the Central Pacific Ocean, and Hurricane John in the eastern Pacific Ocean.

Hurricane Ernesto's Rainfall Track

The rainfall is accumulated within approximately 410 miles (a radius of 6 degrees) from the storm's center along the track. The track line is superimposed on the rainfall, with the storm intensity indicated by the color of the line. For the most part, Ernesto was a tropical storm (red line) and became a category one hurricane on the Saffir-Simpson scale on Aug. 28, south of Hispanola. The month and day are indicated along the track. For example, "8/28" is Aug. 28, 2006.

A significant disruption of the storm's rainfall occurred as the storm moved over Cuba, likely contributing to Ernesto's inability to intensify. Despite its modest intensity, Ernesto dumped large quantities of rain on the East Coast. For example, eastern North Carolina recorded 8 to 12 inches of rain, while southeastern Virginia measured up to a foot. Seven inches fell in Worcester County on Maryland's Eastern Shore. Notice how the accumulations estimated from the TRMM data approximately match these reports.

Super Typhoon Ioke's Track

The rainfall is accumulated within approximately 410 miles (a radius of 6 degrees) of the storm center following the track. The track is superimposed on the rainfall, with the storm intensity indicated by the color of the line (see legend). The month and day are indicated along the track. Intense precipitation occurred as Ioke spent approximately 8 days at Category 4 and 5 intensity. The rainfall on the day Aug. 29 is estimated by TRMM to be between 120-140 millimeters (4.7 inches- 5.5 inches) as depicted in orange/red in the image. Ioke was a very long-lasting intense storm. The image shows that the rain accumulation exceeded 80 millimeters once the storm reached Category 4 intensity and stayed above that value for about 7 days. On Sept. 1, the rainfall began to diminish and a day later the storm’s intensity began to decrease.

Hurricane John Slammed Baja California

The rainfall is accumulated within approximately 410 miles (a radius of 6 degrees) of the storm center following the track. The track is superimposed on the rainfall, with the storm intensity indicated by the color of the line. For example, for most of the day on Aug. 30, the track line is cyan or light blue, indicating at that time, that John was a Category 3 storm on the Saffir-Simpson scale with winds between 111-130 mph. The month and day are indicated along the track. On Tuesday, September 5, much of the southwestern United States was under clouds and rain as the remnants of John moved closer to the region. The normally dry region of southern New Mexico got enough rain to cause isolated road flooding, John's remnants brought southern Arizona scattered rain.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2006/trmm_2006rain.html

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>