Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM Satellite Tracks 2006 Hurricane Rainfall

25.09.2006
How can one know how much rain really falls over the path of a tropical storm or hurricane?

This is a question that greatly interests meteorologists and hydrologists. On their behalf, and on behalf of the public which ultimately benefits from better observations of storms, NASA scientists are using satellite data from its rain gauge in space, the Tropical Rainfall Measuring Mission or “TRMM” to help provide these measurements.

TRMM, a joint mission between NASA and JAXA, the Japanese Space Agency, was launched in 1997 to study rainfall in the tropics. Since then, researchers and forecasters have found TRMM invaluable. TRMM has provided rainfall data in places that have no rain gauges, as well as lightning data and a never before seen 3-D look into storms. That 3-D capability has also led scientists to formulate a theory on "Hot Towers," or towering clouds that form in the eyewall of a hurricane.

Currently, scientists are using TRMM data to provide a complete picture of precipitation around the entire world. Goddard scientists Bob Adler and George Huffman are compiling this information using TRMM, as well as data from NASA’s Aqua satellite, a few Department of Defense satellites, a few National Oceanic and Atmospheric Administration polar-orbit satellites, and five international geostationary-orbit satellites. Polar orbiting satellites fly over the north and south poles. Geostationary satellites are those that orbit the Earth in a fixed position over the Equator.

This combination of satellite data allows Adler and Huffman to compute how much rain has fallen over three hour periods for most of the world, not including the upper northern and lower southern hemispheres. Huffman said "Data from TRMM are key to getting the complete picture of rainfall around the world, because of the satellite's high quality sensors and special orbit." Adler and Huffman take advantage of these attributes to adjust each of the other satellite data sets to TRMM's rainfall data.

Scott Braun, a hurricane researcher at NASA's Goddard Space Flight Center, Greenbelt, Md., uses these TRMM Multi-satellite Precipitation Analysis data to create maps of rainfall accumulation along the tracks of hurricanes.

These images show the mapped rainfall for 2006's Hurricane Ernesto in the Atlantic Ocean, Super Typhoon Ioke in the Central Pacific Ocean, and Hurricane John in the eastern Pacific Ocean.

Hurricane Ernesto's Rainfall Track

The rainfall is accumulated within approximately 410 miles (a radius of 6 degrees) from the storm's center along the track. The track line is superimposed on the rainfall, with the storm intensity indicated by the color of the line. For the most part, Ernesto was a tropical storm (red line) and became a category one hurricane on the Saffir-Simpson scale on Aug. 28, south of Hispanola. The month and day are indicated along the track. For example, "8/28" is Aug. 28, 2006.

A significant disruption of the storm's rainfall occurred as the storm moved over Cuba, likely contributing to Ernesto's inability to intensify. Despite its modest intensity, Ernesto dumped large quantities of rain on the East Coast. For example, eastern North Carolina recorded 8 to 12 inches of rain, while southeastern Virginia measured up to a foot. Seven inches fell in Worcester County on Maryland's Eastern Shore. Notice how the accumulations estimated from the TRMM data approximately match these reports.

Super Typhoon Ioke's Track

The rainfall is accumulated within approximately 410 miles (a radius of 6 degrees) of the storm center following the track. The track is superimposed on the rainfall, with the storm intensity indicated by the color of the line (see legend). The month and day are indicated along the track. Intense precipitation occurred as Ioke spent approximately 8 days at Category 4 and 5 intensity. The rainfall on the day Aug. 29 is estimated by TRMM to be between 120-140 millimeters (4.7 inches- 5.5 inches) as depicted in orange/red in the image. Ioke was a very long-lasting intense storm. The image shows that the rain accumulation exceeded 80 millimeters once the storm reached Category 4 intensity and stayed above that value for about 7 days. On Sept. 1, the rainfall began to diminish and a day later the storm’s intensity began to decrease.

Hurricane John Slammed Baja California

The rainfall is accumulated within approximately 410 miles (a radius of 6 degrees) of the storm center following the track. The track is superimposed on the rainfall, with the storm intensity indicated by the color of the line. For example, for most of the day on Aug. 30, the track line is cyan or light blue, indicating at that time, that John was a Category 3 storm on the Saffir-Simpson scale with winds between 111-130 mph. The month and day are indicated along the track. On Tuesday, September 5, much of the southwestern United States was under clouds and rain as the remnants of John moved closer to the region. The normally dry region of southern New Mexico got enough rain to cause isolated road flooding, John's remnants brought southern Arizona scattered rain.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2006/trmm_2006rain.html

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>