Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI scientists use near real-time sensor data to detect coastal ocean pollution

20.09.2006
New technique could lead to quicker warning system for public beaches

A discovery by UC Irvine scientists could help public health officials know instantly when pollution has moved into the coastal ocean – a breakthrough that could enable authorities to post warnings or close beaches in minutes rather than days.

The new technique analyzes temperature and salinity data collected by sensors located in the water along the Southern California coast. Researchers found that fluctuations in the sensor data correlate with changes in water quality as soon as they occur. This type of analysis may lead to detection methods that are far faster than the current method of physically collecting water and testing it in a lab.

“Decisions to post a warning or close a beach are currently made one to three days after a sample is collected. This would be fine if you were testing water that sits in a tub, but ocean currents are highly dynamic, and water quality varies hour by hour and minute to minute,” said Stanley B. Grant, professor of chemical engineering and materials science at UCI. “Our research shows that near real-time sensor data can be used to detect changes in the state of the coastal ocean – information that could, in concert with traditional monitoring data and new ocean observing systems, eventually result in the creation of an up-to-the-minute water-quality report accessible by the public on the Internet.”

Grant, along with Brett F. Sanders, associate professor of civil and environmental engineering, and graduate student Youngsul Jeong published their research in the current online issue of Environmental Science and Technology.

Coastal ocean observing systems – devices that use technology to sense environmental conditions – collect large amounts of data such as temperature, salinity and water level. The data is streamed in near real-time via the Internet for scientists and coastal managers to process and interpret.

These sensors cannot measure bacteria levels that officials use to determine whether surf-zone water is safe for bathing, but UCI researchers discovered that changes in temperature and salinity can signal pollution if the data – using a mathematical equation – is transformed into a measurement of the range over which the data naturally fluctuates. This study shows for the first time that two measures of these fluctuations – Fisher Information and Shannon Entropy – can translate high-frequency sensor data into information suitable for near real-time management of the coastal ocean. Fisher Information and Shannon Entropy have been used in other cases to detect abnormalities in brain signals.

“At Newport and Huntington beaches – where we tested the idea – water quality violations were more likely to occur when, over the course of a single day, salinity fluctuated around a larger range of values and temperature fluctuated around a more narrow range of values,” Grant said. “These patterns of fluctuation reflect the mixing of different parcels of water – some contaminated and some not – into the coastal ocean.”

The research team analyzed data recorded over three months in early 2004 by a sensor located one meter underneath the water at Newport Pier. The sensor is part of a growing network of coastal sensors called the Southern California Coastal Ocean Observing System. During the period of data collection, local officials noted 35 days in which one or more water quality standards were violated at nearby Newport and Huntington beaches. Researchers then conducted a mathematical study to asses how water quality correlated with the daily average sensor measurements of salinity and temperature, and with the Fisher Information and Shannon Entropy calculated from this data.

Scientists found that water quality coincided with depressions in ocean salinity, but not with changes in near-shore ocean temperature. However, when the sensor data was transformed using Fisher Information and Shannon Entropy, surf zone water quality violations correlated with a number of resulting indices, most notably salinity and temperature. This indicates that changes in the range over which salinity and temperature fluctuate – measured by both Fisher Information and Shannon Entropy – appear to reflect the origin, transport and mixing of pollutants in the coastal ocean.

“If we could use this knowledge to build a next-generation pollution warning system, bathers could know quicker when pollution moves into the surf zone,” Grant said. “The economic and personal benefits would be enormous. The public could go to the ocean and have fun and not get sick the next day.”

Bathing in polluted ocean water can cause gastrointestinal disease, diarrhea, vomiting, and eye and ear infections.

This research was supported by the University of California Marine Council, the Santa Ana Regional Water Quality Control Board and Conexant Systems.

About the Southern California Coastal Ocean Observing System: SCCOOS brings together coastal observations in the Southern California Bight to provide information necessary to address issues in climate change, ecosystem preservation and management, coastal water quality, maritime operations, coastal hazards and national security. As a science-based decision-support system, SCCOOS works interactively with local, state and federal agencies, resource managers, industry, policy makers, educators, scientists and the general public to provide data, models and products that advance understanding of the current and future state of the coastal and global environment.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.3 billion. For more UCI news, visit www.today.uci.edu.

Television: UCI has a broadcast studio available for live or taped interviews. For more information, visit www.today.uci.edu/broadcast.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.uci.edu

More articles from Ecology, The Environment and Conservation:

nachricht When corals eat plastics
24.05.2018 | Justus-Liebig-Universität Gießen

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>