Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI scientists use near real-time sensor data to detect coastal ocean pollution

20.09.2006
New technique could lead to quicker warning system for public beaches

A discovery by UC Irvine scientists could help public health officials know instantly when pollution has moved into the coastal ocean – a breakthrough that could enable authorities to post warnings or close beaches in minutes rather than days.

The new technique analyzes temperature and salinity data collected by sensors located in the water along the Southern California coast. Researchers found that fluctuations in the sensor data correlate with changes in water quality as soon as they occur. This type of analysis may lead to detection methods that are far faster than the current method of physically collecting water and testing it in a lab.

“Decisions to post a warning or close a beach are currently made one to three days after a sample is collected. This would be fine if you were testing water that sits in a tub, but ocean currents are highly dynamic, and water quality varies hour by hour and minute to minute,” said Stanley B. Grant, professor of chemical engineering and materials science at UCI. “Our research shows that near real-time sensor data can be used to detect changes in the state of the coastal ocean – information that could, in concert with traditional monitoring data and new ocean observing systems, eventually result in the creation of an up-to-the-minute water-quality report accessible by the public on the Internet.”

Grant, along with Brett F. Sanders, associate professor of civil and environmental engineering, and graduate student Youngsul Jeong published their research in the current online issue of Environmental Science and Technology.

Coastal ocean observing systems – devices that use technology to sense environmental conditions – collect large amounts of data such as temperature, salinity and water level. The data is streamed in near real-time via the Internet for scientists and coastal managers to process and interpret.

These sensors cannot measure bacteria levels that officials use to determine whether surf-zone water is safe for bathing, but UCI researchers discovered that changes in temperature and salinity can signal pollution if the data – using a mathematical equation – is transformed into a measurement of the range over which the data naturally fluctuates. This study shows for the first time that two measures of these fluctuations – Fisher Information and Shannon Entropy – can translate high-frequency sensor data into information suitable for near real-time management of the coastal ocean. Fisher Information and Shannon Entropy have been used in other cases to detect abnormalities in brain signals.

“At Newport and Huntington beaches – where we tested the idea – water quality violations were more likely to occur when, over the course of a single day, salinity fluctuated around a larger range of values and temperature fluctuated around a more narrow range of values,” Grant said. “These patterns of fluctuation reflect the mixing of different parcels of water – some contaminated and some not – into the coastal ocean.”

The research team analyzed data recorded over three months in early 2004 by a sensor located one meter underneath the water at Newport Pier. The sensor is part of a growing network of coastal sensors called the Southern California Coastal Ocean Observing System. During the period of data collection, local officials noted 35 days in which one or more water quality standards were violated at nearby Newport and Huntington beaches. Researchers then conducted a mathematical study to asses how water quality correlated with the daily average sensor measurements of salinity and temperature, and with the Fisher Information and Shannon Entropy calculated from this data.

Scientists found that water quality coincided with depressions in ocean salinity, but not with changes in near-shore ocean temperature. However, when the sensor data was transformed using Fisher Information and Shannon Entropy, surf zone water quality violations correlated with a number of resulting indices, most notably salinity and temperature. This indicates that changes in the range over which salinity and temperature fluctuate – measured by both Fisher Information and Shannon Entropy – appear to reflect the origin, transport and mixing of pollutants in the coastal ocean.

“If we could use this knowledge to build a next-generation pollution warning system, bathers could know quicker when pollution moves into the surf zone,” Grant said. “The economic and personal benefits would be enormous. The public could go to the ocean and have fun and not get sick the next day.”

Bathing in polluted ocean water can cause gastrointestinal disease, diarrhea, vomiting, and eye and ear infections.

This research was supported by the University of California Marine Council, the Santa Ana Regional Water Quality Control Board and Conexant Systems.

About the Southern California Coastal Ocean Observing System: SCCOOS brings together coastal observations in the Southern California Bight to provide information necessary to address issues in climate change, ecosystem preservation and management, coastal water quality, maritime operations, coastal hazards and national security. As a science-based decision-support system, SCCOOS works interactively with local, state and federal agencies, resource managers, industry, policy makers, educators, scientists and the general public to provide data, models and products that advance understanding of the current and future state of the coastal and global environment.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.3 billion. For more UCI news, visit www.today.uci.edu.

Television: UCI has a broadcast studio available for live or taped interviews. For more information, visit www.today.uci.edu/broadcast.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.uci.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>