Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No Laughing Matter

20.09.2006
Abertay University is supporting the University of Plymouth in a £1 million project which could reduce the impact of global warming by decreasing the levels of nitrous oxide – ‘laughing gas’ – produced by the earth’s soil.

The ground-breaking project has been made possible thanks to new state-of-the-art technology installed at Plymouth’s School of Earth, Ocean and Environmental Sciences and £1.138 million funding from the Agri-food Committee of the Biotechnology and Biological Sciences Research Council (BBSRC).

Plymouth is also working closely with the Scottish Informatics, Mathematics, Biology and Statistics soil research group (SIMBIOS) at the University of Abertay Dundee, as well as Rothamsted Research and the Institute of Grassland and Environmental Research.

If soil becomes partially saturated it gives off the ‘greenhouse gas’ nitrous oxide. The levels are not sufficient to harm crops but the gas enters the atmosphere and adds to the global warming problem.

The research will use the new ‘Pore-Cor’ software, developed at the University of Plymouth, which allows the structure of soil to be studied in ‘virtual reality.’ Brand new laboratories have been built and a ‘lysimeter’ constructed in which simulated rainfall is passed through large soil blocks.

Peter Matthews, Reader in Applied Physical Chemistry and the university’s Environmental and Fluid Modelling Group, explains: "We have assembled a team of ten of the top researchers across the UK to tackle this problem. By the end of the project, we should know much more about how saturation, fertilising and compaction of both arable and grassland soil alters the amount of nitrous oxide it gives off.”

A sophisticated soil compression apparatus is currently being constructed and will be installed at Rothamsted Research (iHarpenden, Herts). The compacted soil samples will then be sent to experts at the Institute of Grassland and Environmental Research, near Okehampton, who will monitor the amount of gas given off. Other samples will be subjected to X-ray ‘CT scanning’ by SIMBIOS and the results will be modelled and interpreted at Plymouth and compared to results from the Plymouth soil blocks.

Professor Iain Young of SIMBIOS comments: “In a single handful of soil, there are more individual organisms than the total number of human beings who have ever lived. Many of these still haven’t even been identified by science, much less the huge complexity of the way they interact. Our sophisticated x-ray tomography equipment allows soil to be studied from the inside without disrupting its delicate internal ecosystems.”

The government is already instructing farmers on optimum tillage regimes within the Single Payment Scheme, and these results will strengthen the scientific basis of the advice being issued.

Kevin Coe | alfa
Further information:
http://www.abertay.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>