Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boat paint to blame for Norfolk Broads’ desolation

19.09.2006
One of the main culprits behind an environmental catastrophe that desolated one of Britain’s most important wildlife habitats has finally been identified in a study led by researchers from UCL (University College London) and Acroloxus Wetlands Consultancy Ltd, Canada.

In the current issue of the journal Environmental Science & Technology, they reveal that introduction of the compound tributyltin (TBT) as a biocide in boat paint in the 1960s resulted in a dramatic and sudden loss of aquatic vegetation from most of the 50 or so Norfolk Broads lakes.

At the time, scientists pointed the finger at contamination from sewage works and fertiliser run-off from farmland, despite suggestions from the local community that the burgeoning leisure boating industry might be to blame.

Though the use of TBT was banned in freshwater systems in the UK in 1987, the researchers say 40 years on from TBT’s introduction the fragile ecosystem remains shattered despite expensive attempts to restore it.

Dr Carl Sayer, of the UCL Environmental Change Research Centre, who co-led the study, says: “For too long TBT has been neglected as a driver of environmental destruction in freshwater wetlands and even though it is no longer in use in UK inland waterways, TBT contamination and its negative effects are still being reported all over the world.

“Real concerns have been raised about TBT derived from industrial and ship breaking activities in several major river systems including the Ganges, Brahmaputra and Yangtze – all of which are connected to shallow lakes. In the case of the Yangtze, the linked shallow lakes are some of the largest in the world and, like the Broads, have experienced problems with plant loss on a large scale.”

TBT was originally designed for use on the hulls of large ocean-going ships to reduce the build-up of barnacles. Since the 1970s it has been linked to a host of negative effects in the marine environment including mutations in shellfish. An aggressive marketing programme in the 1960s saw its use fashionably worldwide on much smaller craft both in the oceans and within inland waterways.

“TBT is extremely toxic and highly persistent in the environment, earning it the controversial title as the most toxic substance ever introduced deliberately by man into the aquatic environment,” explains Dr Sayer.

“In freshwaters, once TBT is released from an antifouling coating it is rapidly absorbed by bacteria and algae, and eventually works its way up the food chain. Within a short period of time after the paint’s introduction to the Broads, it knocked out many of the small invertebrates which are a part of the life support system for water plants – turning the waters of the Broads green with algae.”

To investigate levels of TBT in the Broads the researchers took sediment cores from two lakes, one close to the centre of the boating industry and the other half a kilometre away. Results show an abrupt decline in plant and invertebrate populations at the precise time that a strong TBT signature was detected.

“The irony of the tale is that the paint was designed to stop barnacles attaching to boats – which you don’t get in freshwater. By simply lifting boats out of the water once a year and using a bit of elbow grease, one of Britain’s areas of outstanding natural beauty might still be intact rather than on the long road to recovery.”

The study was funded by English Nature, the Broads Authority, the Department of Environment, Food and Rural Affairs (DEFRA), and the Natural Environment Research Council (NERC).

Judith Moore | alfa
Further information:
http://www.ucl.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>