Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT team describes unique cloud forest

15.09.2006
Trees that live in an odd desert forest in Oman have found an unusual way to water themselves by extracting moisture from low-lying clouds, MIT scientists report.

In an area that is characterized mostly by desert, the trees have preserved an ecological niche because they exploit a wispy-thin source of water that only occurs seasonally, said Elfatih A.B. Eltahir, professor of civil and environmental engineering, and former MIT graduate student Anke Hildebrandt.

After studying the Oman site, they also expressed concern that the unusual forest could be driven into extinction if hungry camels continue eating too much of the foliage. As the greenery disappears it's possible the trees will lose the ability to pull water from the mist and recharge underground reservoirs.

A report on their research was published in a recent issue of Geophysical Research Letters. They are also advising the Omani government on handling the problem.

The forest is especially unique, said Eltahir and Hildebrandt, because it "is a water-limited seasonal cloud forest" that is kept alive by water droplets gathered from passing clouds -- ground fog. The water dribbles into the ground and sustains the trees later when the weather is dry. The MIT work suggests the trees actually get more of their water through contact with clouds than via rainfall.

In general, cloud forests are not really rare. But they occur most frequently in moist tropical regions where there is ample rainfall. So it is unusual, the researchers said, to find a cloud forest in a region known for chronic dryness.

The researchers studied the area in Oman to learn how the Dhofar Mountain ecosystem "functions naturally, and how it may respond to human activity" that could lead to desertification and the need for reforestation.

Eltahir and Hildebrandt, who is now at the UFZ Center for Environmental Research, in Leipzig, Germany, said the unusual forest is an interesting remnant "of a moist vegetation belt that once spread across the Arabian Peninsula" in the distant past. At that time the regional climate was generally wetter.

The forested area in the Sultanate of Oman is now semi-arid, and most of the ancient tree vegetation is gone. This small remnant has managed to survive in the Dhofar Mountains.

But it is under threat.

Although many Omanis have moved into cities and towns as the country has grown rich on oil, Eltahir explained, a family's prestige still comes from owning many camels, and people now tend to keep more camels than they need, which is part of the problem facing the forest.

"It is an unusual place," Eltahir said. "It's a very good example of a unique and fragile ecosystem" where constant pressure from over-grazing can have consequences beyond defoliation. In fact, the forest illustrates how small changes can lead to major impact on far bigger systems, Eltahir said.

The trees in wetter ecosystems would likely recover from small amounts of over-grazing, Eltahir said, but "in this location, due to the nature of the interaction of the canopy structure with the clouds, the trees may not recover."

The two said the forest probably would not regenerate naturally once it is gone. Without the trees that sweep the extra water from clouds, the forest cannot regrow. Grass, even if abundant, cannot collect enough moisture from fog to let a forest regrow.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>