Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting an answer to the threat of flooding

08.09.2006
The latest advances in computer flood modelling and animation that could help to improve the way we protect the UK’s towns and cities from flooding will be highlighted at this year’s BA Festival of Science in Norwich.

By improving the prediction and visualisation of the speed, direction and extent of water flow during potential flooding events, this research will help inform investment in flood defence and drainage infrastructure, where new developments should be sited and, where necessary, evacuation planning.

Developed by the multidisciplinary Flood Risk Management Research Consortium (FRMRC), these animations are based not only on state-of-the-art computer modelling tools identified and adapted by consortium researchers, but also on data pinpointing how land in and around UK towns and cities is used, such as for agricultural, industrial or residential purposes. Land-use can have a crucial impact on the severity of flooding events because agricultural practices, such as choice of crop and livestock density, can influence how much water runs off the land.

“Because the animations we are developing take into account not just the shape and contours of the land but also the way it is actually used, they provide additional information that can be used to assess the risk of flooding to people and property,” says Garry Pender, Professor of Environmental Engineering at Heriot-Watt University, who is leading the research.

The Flood Risk Management Research Consortium is a collaborative initiative supported by the Engineering and Physical Sciences Research Council (EPSRC), the Department for the Environment, Food and Rural Affairs (Defra), the Environment Agency, the Natural Environment Research Council (NERC), the Scottish Executive, UK Water Industry Research (UKWIR), and the Rivers Agency (Department of Agriculture and Rural Development, Northern Ireland).

Professor Pender’s team is placing particular emphasis on acquiring reliable, up-to-date digital information describing rivers’ catchments as well as their shapes. Recent developments in data collection using airborne mapping systems, such as LiDAR (Light Detection and Ranging), have significantly reduced the cost of collecting information of this kind.

This unprecedented combination of cutting-edge computer modelling capability and up-to-date information on land use offers the prospect of a major leap forward in flood management. During his presentation at the BA Festival, Professor Pender will demonstrate some of the computer animations that his team has already developed, which show test applications of the systems to hypothetical flood scenarios in Glasgow and London.

Professor Pender will also summarise the consortium’s progress in other areas and emphasise the multidisciplinary character of its work. The consortium is integrating, for the first time, engineering, land-use management, social sciences, decision support, and the provision of information to inform government policy to effectively target all the key aspects of flood-risk management, from flood forecasting to the environmental impact of flooding events.

“The overall aim of the consortium is to ensure that the UK is better equipped than ever before to manage the effects of flooding,” says Professor Pender.

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>