Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting an answer to the threat of flooding

08.09.2006
The latest advances in computer flood modelling and animation that could help to improve the way we protect the UK’s towns and cities from flooding will be highlighted at this year’s BA Festival of Science in Norwich.

By improving the prediction and visualisation of the speed, direction and extent of water flow during potential flooding events, this research will help inform investment in flood defence and drainage infrastructure, where new developments should be sited and, where necessary, evacuation planning.

Developed by the multidisciplinary Flood Risk Management Research Consortium (FRMRC), these animations are based not only on state-of-the-art computer modelling tools identified and adapted by consortium researchers, but also on data pinpointing how land in and around UK towns and cities is used, such as for agricultural, industrial or residential purposes. Land-use can have a crucial impact on the severity of flooding events because agricultural practices, such as choice of crop and livestock density, can influence how much water runs off the land.

“Because the animations we are developing take into account not just the shape and contours of the land but also the way it is actually used, they provide additional information that can be used to assess the risk of flooding to people and property,” says Garry Pender, Professor of Environmental Engineering at Heriot-Watt University, who is leading the research.

The Flood Risk Management Research Consortium is a collaborative initiative supported by the Engineering and Physical Sciences Research Council (EPSRC), the Department for the Environment, Food and Rural Affairs (Defra), the Environment Agency, the Natural Environment Research Council (NERC), the Scottish Executive, UK Water Industry Research (UKWIR), and the Rivers Agency (Department of Agriculture and Rural Development, Northern Ireland).

Professor Pender’s team is placing particular emphasis on acquiring reliable, up-to-date digital information describing rivers’ catchments as well as their shapes. Recent developments in data collection using airborne mapping systems, such as LiDAR (Light Detection and Ranging), have significantly reduced the cost of collecting information of this kind.

This unprecedented combination of cutting-edge computer modelling capability and up-to-date information on land use offers the prospect of a major leap forward in flood management. During his presentation at the BA Festival, Professor Pender will demonstrate some of the computer animations that his team has already developed, which show test applications of the systems to hypothetical flood scenarios in Glasgow and London.

Professor Pender will also summarise the consortium’s progress in other areas and emphasise the multidisciplinary character of its work. The consortium is integrating, for the first time, engineering, land-use management, social sciences, decision support, and the provision of information to inform government policy to effectively target all the key aspects of flood-risk management, from flood forecasting to the environmental impact of flooding events.

“The overall aim of the consortium is to ensure that the UK is better equipped than ever before to manage the effects of flooding,” says Professor Pender.

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>