Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record summer causing long-term damage to soil – herbicide degradation poorer after drought

04.09.2006
Heat records and continuing drought like in the summers of 2003 and 2006 make not only plants dry up, but they can also cause long-term damage to soils. This was found by scientists from the GSF Research Centre for Environment and Health, who are engaged in a long-term test investigating the ability of soils to degrade the herbicide isoproturon.

“Since 1997 we have been observing four outdoor soils,” explains Dr. Reiner Schroll (Institute of Soil Ecology), “we were essentially concerned with the question how isoproturon behaves in different soils as a model substance for pesticides.” Until summer 2003 one of these soils degraded isoproturon particularly efficiently: the microorganisms living in the soil mineralised up to 60 per cent of the isoproturon applied within approx. two months.

After the drought in summer 2003, however, the degradation capacity of this soil dropped dramatically. In particular, there was only very little degradation in the top few centimetres. “Drought and heat resulted in very profound changes in the composition of the microbial communities (biocoenosis), which could not even be reversed by extended remoistening of the soil before the investigations were carried out,” Schroll explains the drastic reduction. On the one hand the absolute number of microorganisms dropped, on the other the composition of species changed: apparently the bacteria degrading isoproturon in particular were so badly damaged that they had practically become extinct in the top soil.

The soil has still not recovered completely up to this day: new investigations in April 2006 showed a degradation capacity of only 15 per cent of the isoproturon applied. “Our results show how important long-term experiments are,“ Schroll emphasizes, „it was only when we compared the degradation capacity over several years that we noticed the changes.”

To make a comparison of the degradation capacity beyond vegetation periods possible at all, the various soils have to be analysed in identical weather conditions. In particular the soil water content is of central significance, since it influences the air-oxygen supply to the microorganisms on the one hand, and on the other determines the supply with nutrients and chemicals to be degraded, such as pesticides. Therefore, all soil samples were moistened before the tests in laboratory experiments. It is not the absolute water content that is decisive for the microbial activity, but the water tension, i.e. the force which retains the water in the soil. It had, however, not been known up until now at which water tension the optimum degradation of substances can be expected, so that this water content had to be determined empirically for each soil individually.

While they were conducting these tests, the GSF scientists made yet another very interesting discovery: “Irrespective of the type of soil and the substance to be degraded, the maximum microbial degradation activity always developed at a water tension of -0.015 Megapascal – this value seems to be a natural constant,” Schroll emphasizes. At this water tension, e.g., the soil microorganisms only have to exert a suction of approx. 0.15 millibars, in order to take up water from the soil – microorganisms love a moist environment.

Schroll’s results are particularly relevant, e.g., for the environment in the conurbation of Munich, since one of the soils investigated is a typical agricultural soil, as it is representative for large areas of the Munich gravel plain. When herbicides can no longer be degraded properly there, they can be shifted downwardly more easily and may enter the drinking water. Ploughing could be a countermeasure to this: since the lower soil layers are not affected as badly by the drought, mixing the soil may help, in order to settle the respective microorganisms in the top soil areas again. “For very badly damaged soils the deliberate introduction of suitable microorganisms might also be a possibility,“ explains Schroll, „both measures, however, are more labour-intensive and slightly more expensive than the minimum tillage, which is increasingly applied in agriculture. But if the weather fluctuations with their various effects continue to intensify – and estimates made by colleagues very strongly suggest this – science and agriculture will have to respond with appropriate countermeasures. Unfortunately climate change is a fact, and we have to face it.”

Michael van den Heuvel | alfa
Further information:
http://www.gsf.de/neu/Aktuelles/Presse/2006/schroll_en.php

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>