Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record summer causing long-term damage to soil – herbicide degradation poorer after drought

04.09.2006
Heat records and continuing drought like in the summers of 2003 and 2006 make not only plants dry up, but they can also cause long-term damage to soils. This was found by scientists from the GSF Research Centre for Environment and Health, who are engaged in a long-term test investigating the ability of soils to degrade the herbicide isoproturon.

“Since 1997 we have been observing four outdoor soils,” explains Dr. Reiner Schroll (Institute of Soil Ecology), “we were essentially concerned with the question how isoproturon behaves in different soils as a model substance for pesticides.” Until summer 2003 one of these soils degraded isoproturon particularly efficiently: the microorganisms living in the soil mineralised up to 60 per cent of the isoproturon applied within approx. two months.

After the drought in summer 2003, however, the degradation capacity of this soil dropped dramatically. In particular, there was only very little degradation in the top few centimetres. “Drought and heat resulted in very profound changes in the composition of the microbial communities (biocoenosis), which could not even be reversed by extended remoistening of the soil before the investigations were carried out,” Schroll explains the drastic reduction. On the one hand the absolute number of microorganisms dropped, on the other the composition of species changed: apparently the bacteria degrading isoproturon in particular were so badly damaged that they had practically become extinct in the top soil.

The soil has still not recovered completely up to this day: new investigations in April 2006 showed a degradation capacity of only 15 per cent of the isoproturon applied. “Our results show how important long-term experiments are,“ Schroll emphasizes, „it was only when we compared the degradation capacity over several years that we noticed the changes.”

To make a comparison of the degradation capacity beyond vegetation periods possible at all, the various soils have to be analysed in identical weather conditions. In particular the soil water content is of central significance, since it influences the air-oxygen supply to the microorganisms on the one hand, and on the other determines the supply with nutrients and chemicals to be degraded, such as pesticides. Therefore, all soil samples were moistened before the tests in laboratory experiments. It is not the absolute water content that is decisive for the microbial activity, but the water tension, i.e. the force which retains the water in the soil. It had, however, not been known up until now at which water tension the optimum degradation of substances can be expected, so that this water content had to be determined empirically for each soil individually.

While they were conducting these tests, the GSF scientists made yet another very interesting discovery: “Irrespective of the type of soil and the substance to be degraded, the maximum microbial degradation activity always developed at a water tension of -0.015 Megapascal – this value seems to be a natural constant,” Schroll emphasizes. At this water tension, e.g., the soil microorganisms only have to exert a suction of approx. 0.15 millibars, in order to take up water from the soil – microorganisms love a moist environment.

Schroll’s results are particularly relevant, e.g., for the environment in the conurbation of Munich, since one of the soils investigated is a typical agricultural soil, as it is representative for large areas of the Munich gravel plain. When herbicides can no longer be degraded properly there, they can be shifted downwardly more easily and may enter the drinking water. Ploughing could be a countermeasure to this: since the lower soil layers are not affected as badly by the drought, mixing the soil may help, in order to settle the respective microorganisms in the top soil areas again. “For very badly damaged soils the deliberate introduction of suitable microorganisms might also be a possibility,“ explains Schroll, „both measures, however, are more labour-intensive and slightly more expensive than the minimum tillage, which is increasingly applied in agriculture. But if the weather fluctuations with their various effects continue to intensify – and estimates made by colleagues very strongly suggest this – science and agriculture will have to respond with appropriate countermeasures. Unfortunately climate change is a fact, and we have to face it.”

Michael van den Heuvel | alfa
Further information:
http://www.gsf.de/neu/Aktuelles/Presse/2006/schroll_en.php

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>