Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study confirms ammunition as main source of lead poisoning in condors

01.09.2006
A study led by environmental toxicologists at the University of California, Santa Cruz, has confirmed what wildlife biologists have long suspected: Bullet fragments and shotgun pellets in the carcasses of animals killed by hunters are the principal sources of lead poisoning in California condors that have been reintroduced to the wild.

Lead poisoning is a major factor limiting the success of efforts to rebuild populations of the endangered California condor. Since the mid-1980s, condors have been bred in captivity and released back into the wild in California, Arizona, and Baja California. The birds, which feed on carrion, can ingest lead from ammunition in animal carcasses or gut piles left behind by hunters.

The UCSC researchers used a "fingerprinting" technique based on the unique isotope ratios found in different sources of lead. The technique enabled them to match the lead in blood samples from condors to the lead in ammunition. Their findings were published online today by the journal Environmental Science & Technology.

"There had been anecdotal reports for years about condors being exposed to lead from ammunition, but there was never enough clear evidence to document the extent of the problem. We knew that we could probably identify the sources of the lead using isotopic signatures," said Donald Smith, professor and chair of environmental toxicology at UCSC and a coauthor of the paper.

The study was spearheaded by Smith's graduate student, Molly Church, who is now at the University of Pennsylvania's School of Veterinary Medicine and is first author of the paper. Church worked with researchers at several institutions and organizations, including the Ventana Wildlife Society and the U.S. Fish and Wildlife Service, to collect and analyze blood and tissue samples from California condors. She also analyzed ammunition obtained from a variety of sources throughout central California.

"We sampled the ammunition that these birds are most likely to encounter in the remains of hunted game, and we found that lead from those sources can account for the lead in the blood of 77 percent of the birds tested," said Church, who undertook the study after spending a summer monitoring condors as a volunteer with the Ventana Wildlife Society.

The researchers obtained blood samples from 18 free-flying condors in central California and 8 birds that had been raised in captivity and were still in holding pens waiting to be released. At the time of the study, this sample represented 43 percent of the wild condor population in all of California.

The lead levels in the blood of prerelease condors were low, and the lead was isotopically similar to background lead in the California environment. In the free-flying condors, however, blood lead levels were higher and the lead had a different isotopic composition that approached the composition of the lead in ammunition. In the most severely lead-poisoned birds, the blood lead matched exactly the composition of the lead in ammunition, Smith said.

"We found that in the birds with elevated blood lead, the lead isotope ratios fit a mixing model in which one source of lead is the background environment and the other source is ammunition. The results show that lead ammunition in animals shot and left in the field is the predominant source of lead exposure in condors," he said.

Kelly Sorenson, executive director of the Ventana Wildlife Society, said the study provides a solid basis for efforts to resolve the problem of lead exposure in condors. Possible solutions range from legislation limiting the use of lead ammunition to voluntary programs to encourage the use of alternative ammunition in areas where condors are known to scavenge for food, he said.

"There are different ways to get at this problem, but no matter how it is resolved in California, this research was desperately needed not only to confirm the source of the lead but to demonstrate the extent to which ammunition is contributing to the problem," Sorenson said.

In another part of the study, the researchers showed that feathers can be used to monitor lead exposure in condors. They analyzed lead in tissue samples and a feather from a condor that had died of lead poisoning in Arizona. They found that the feather, sampled sequentially along its length, provided a record of the bird's history of lead exposure.

"This shows that we can use feathers to look at the history of lead exposure in individual condors, and we're just starting to do that now with birds that have been reintroduced in California," Smith said.

The elevated lead levels in reintroduced condors are cause for concern even when they are below the level that would cause death from acute lead poisoning, he added. Although it is very difficult to evaluate sublethal effects of toxic substances in wild animals, he said, lead is well known to cause neurological problems in vertebrate animals at relatively low levels of exposure.

"The lead levels that we commonly see in condors are well above the levels considered a concern for human health. If we saw those levels in children, they'd be diagnosed as lead-poisoned and medically treated," Smith said.

Church said she hopes the findings prompt greater efforts not only to reduce lead exposure in condors but to reduce lead contamination in California in general.

"Lead is a well-known toxin that should no longer be getting into the environment, and it would truly be a shame if lead poisoning negated the significant condor conservation efforts and achievements that have taken place over the past several decades," she said.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>