Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellites can see how climate change affects forests

31.08.2006
A NASA-funded study shows that satellites can track the growth and health of forests and detect the impact of a changing climate on them.

Although predicting how future climate change will affect forests remains uncertain, new tools, including satellite data, are giving scientists the information they need to better understand the various factors at play and how they may change forest composition and health.

Scientists have found that satellite measurements of tree species and growth in forested regions across the United States were often equivalent to those taken directly on the ground. The study relied on a sophisticated data product from NASA's MODerate-resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites called the "enhanced vegetation index," a measure of forest productivity that can also be used to gauge the total number of tree species in a region. The data was found to be highly successful in indicating the number of tree species when compared against data compiled, for the first time, in a country-wide survey of tree species by the U.S. Department of Agriculture Forest Service.

The MODIS data also shows that the overall productivity or growth of a forest in response to weather and seasonal conditions was closely linked to the number of different tree species it contains, allowing scientists to more readily infer the effects of climate change. "In anticipation of shifts in climate, accurate measurements of forest growth and composition are becoming more important," said Richard Waring, professor emeritus of forest science at Oregon State University, Corvallis, Ore., and lead author of the study. "These new data help us better predict how forests may change so officials can implement environmental plans or regulations to lessen the impact in advance."

Woody Turner, Program Scientist at NASA Headquarters, Washington, said "this research confirms that MODIS can provide detailed, accurate information on forests over vast regions in a simple, straightforward manner, essential for forest managers in a period of changing climate."

In the past, scientists predicted the productivity of forests from computer models using climate data. Gross primary productivity is a measure of plant photosynthesis and the ability of forests to "inhale" carbon dioxide. Net productivity is the amount of energy left for plant growth following the conversion of carbon dioxide into new plant tissue.

"Such methods relied heavily on costly ground measurements and on mathematical computer models that require extensive soil and climate data, which is often imprecise," said Waring. "The data from MODIS used here may also be helpful in sorting out changes in forest health caused by land conversion or pollution rather than climate change."

The MODIS data was highly accurate in confirming the number of tree species in many regions across the United States, but it predicted more than the number currently present in the Pacific Northwest. This finding is not unexpected given the region's climate history.

A look at the area's evolutionary past suggests that about two to three million years ago, during a period known at the late Pliocene, the region rather suddenly turned cooler and drier, leading to a major die-off of many species, many of which still have not recovered. "Overall, the Pacific Northwest now supports about 60 tree species, but if not for the abrupt climate shift millions of years ago, it is likely the region's current climate would support twice that number," Waring said.

Although forests appear to be adapting to changes in today's climate, prehistoric records indicate that climate change tends to destroy established vegetation patterns and causes new ones to be formed. "It is unclear how forests will respond in the future, when climate change is likely to accelerate," said Waring.

But researchers are fairly certain there will be both winners and losers among tree species. New patterns of tree growth will emerge, some species may die but others may simply migrate and thrive.

Such shifts in the forest landscape may in turn cause more climate changes. For instance, additional warming could result if tree species like evergreen conifers move into areas that were previously treeless or snow-covered since evergreens would reflect less of the sun's energy, causing temperatures near the surface to increase.

Under another possible scenario, climate change might allow a greater number of tree species to grow in some forests, providing a natural defense against insect and disease attacks. But some of the new species could be "invasive" and threaten the overall health of the forests. Unexpected fire, insect and disease outbreaks can also further disturb forests, making them more vulnerable to invasive species. NASA's research tools like MODIS are giving scientists the detailed information they need to better understand such possibilities, vital for improving predictions and preparedness.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>