Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Re-inventing nature for cheaper solar power

31.08.2006
A research team in Sydney has created molecules that mimic those in plants which harvest light and power life on Earth.

“A leaf is an amazingly cheap and efficient solar cell,” says Dr Deanna D’Alessandro, a postdoctoral researcher in the Molecular Electronics Group at the University of Sydney. “The best leaves can harvest 30 to 40 percent of the light falling on them. The best solar cells we can build are between 15 and 20 percent efficient, and expensive to make.”

“We’ve recreated some of the key systems that plants use in photosynthesis,” says Deanna.

Bacteria and green plants use photosynthesis to convert light energy into usable chemical energy. Wheel-shaped arrays of molecules called porphyrins collect light and transfer it to the hub where chemical reactions use the light energy to convert carbon dioxide into energy-rich sugar and oxygen.

“This process, which occurs in about 40 trillionths of a second is fundamental to photosynthesis and is at the base of the food chain for almost all life on Earth,” says Deanna.

“We have been able to construct synthetic porphyrins. More than 100 of them can be assembled around a tree-like core called a dendrimer to mimic the wheel-shaped arrangement in natural photosynthetic systems.”

These molecules designed by the team are about 1 trillionth the size of a soccer ball. But the large number of porphyrins in a single molecule means that a significant amount of light can be captured and converted to electrical energy – just like in nature.

“Since they are so efficient at storing energy, we think they could also be used as batteries – replacing the metal-based batteries that our high technology devices depend on today,” Deanna says.

“Our preliminary results are very promising. We are still in the early stages of building practical solar energy devices using our molecules,” said Deanna. “The challenge is immense, but is crucial to providing alternative energy solutions for Australia and the world.”

Now they’ve made the molecules, the team along with their Japanese collaborators at Osaka University are working to combine them in the equivalent of a plant cell. Then, over the next five years they will attempt to scale up the technology to commercial scale solar panels.

Deanna D’Alessandro is one of 16 Fresh Scientists who are presenting their research to school students and the general public for the first time thanks to Fresh Science, a national program hosted by the Melbourne Museum and sponsored by the Federal and Victorian governments, British Council and New Scientist. One of the Fresh Scientists will win a trip to the UK courtesy of the British Council to present his or her work to the Royal Institution.

Niall Byrne | alfa
Further information:
http://www.scienceinpublic.com/sciencenow/deanna_alessandro.htm

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>