Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Re-inventing nature for cheaper solar power

A research team in Sydney has created molecules that mimic those in plants which harvest light and power life on Earth.

“A leaf is an amazingly cheap and efficient solar cell,” says Dr Deanna D’Alessandro, a postdoctoral researcher in the Molecular Electronics Group at the University of Sydney. “The best leaves can harvest 30 to 40 percent of the light falling on them. The best solar cells we can build are between 15 and 20 percent efficient, and expensive to make.”

“We’ve recreated some of the key systems that plants use in photosynthesis,” says Deanna.

Bacteria and green plants use photosynthesis to convert light energy into usable chemical energy. Wheel-shaped arrays of molecules called porphyrins collect light and transfer it to the hub where chemical reactions use the light energy to convert carbon dioxide into energy-rich sugar and oxygen.

“This process, which occurs in about 40 trillionths of a second is fundamental to photosynthesis and is at the base of the food chain for almost all life on Earth,” says Deanna.

“We have been able to construct synthetic porphyrins. More than 100 of them can be assembled around a tree-like core called a dendrimer to mimic the wheel-shaped arrangement in natural photosynthetic systems.”

These molecules designed by the team are about 1 trillionth the size of a soccer ball. But the large number of porphyrins in a single molecule means that a significant amount of light can be captured and converted to electrical energy – just like in nature.

“Since they are so efficient at storing energy, we think they could also be used as batteries – replacing the metal-based batteries that our high technology devices depend on today,” Deanna says.

“Our preliminary results are very promising. We are still in the early stages of building practical solar energy devices using our molecules,” said Deanna. “The challenge is immense, but is crucial to providing alternative energy solutions for Australia and the world.”

Now they’ve made the molecules, the team along with their Japanese collaborators at Osaka University are working to combine them in the equivalent of a plant cell. Then, over the next five years they will attempt to scale up the technology to commercial scale solar panels.

Deanna D’Alessandro is one of 16 Fresh Scientists who are presenting their research to school students and the general public for the first time thanks to Fresh Science, a national program hosted by the Melbourne Museum and sponsored by the Federal and Victorian governments, British Council and New Scientist. One of the Fresh Scientists will win a trip to the UK courtesy of the British Council to present his or her work to the Royal Institution.

Niall Byrne | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>