Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study provides first-ever look at combined causes of North Atlantic and Arctic Ocean freshening

28.08.2006
A new analysis of 50 years of changes in freshwater inputs to the Arctic Ocean and North Atlantic may help shed light on what's behind the recently observed freshening of the North Atlantic Ocean.

In a report, published in the August 25, 2006 issue of the journal, Science, MBL (Marine Biological Laboratory) senior scientist Bruce J. Peterson and his colleagues describe a first-of-its-kind effort to create a big-picture view of hydrologic trends in the Arctic. Their analysis reveals that freshwater increases from Arctic Ocean sources appear to be highly linked to a fresher North Atlantic.

"The high-latitude freshwater cycle is one of the most sensitive barometers of the impact of changes in climate and broad-scale atmospheric dynamics because of the polar amplification of the global warming signal," says Peterson. "It's easiest to measure these changes in the Arctic and the better we understand this system, the sooner we will know what is happening to the global hydrologic cycle."

The multi-disciplinary team of scientists led by Peterson calculated annual and cumulative freshwater input anomalies (deviations from expected levels) from net precipitation on the ocean surface, river discharge, net attrition of glaciers, and Arctic Ocean sea ice melt and export for the latter half of the 20th century. The scientists compared the fluxes to measured rates of freshwater accumulation in the North Atlantic during the same time period.

Their analysis showed that increasing river discharge and excess net precipitation on the ocean contributed the most freshwater (~20,000 cubic kilometers) to the Arctic and high-latitude North Atlantic. Sea ice reduction provided another ~15,000 cubic kilometers of freshwater, followed by ~2,000 cubic kilometers from melting glaciers. Together, the sum of anomalous inputs from all of the freshwater sources analyzed matched the amount and rate at which fresh water accumulated in the North Atlantic during much of the period from 1965 through 1995.

"This synthesis allows us to judge which freshwater sources are the largest, but more importantly shows how the significance of different sources have changed over the past decades and what has caused the changes," says Peterson. "It prompts us to realize that the relative importance of different sources will change in future decades. Creating a big-picture or synoptic view of the changes in various components of the high-latitude freshwater cycle puts the parts in a perspective where we can judge their individual and collective impact on ocean freshening and circulation."

In recent years, much attention has been given to the observed freshening of Arctic Ocean and North Atlantic and the potential impacts it may have on the earth's climate. Scientists contend that a significant increase of freshwater flow to the Arctic Ocean could slow or halt the Atlantic Deep Water formation, a driving factor behind the great "conveyor belt" current that is responsible for redistributing salt and thermal energy around the globe, influencing the planet's climate. One of the potential effects of altered global ocean circulation could be a cooling of Northern Europe within this century.

The team's comparison of freshwater sources and ocean sink records revealed that over the last half century changes in freshwater inputs and ocean storage occurred not only in conjunction with one another, but in synchrony with rising air temperatures and an amplifying North Atlantic Oscillation (NAO), a climatic phenomenon that has strong impacts on weather and climate in the North Atlantic region and surrounding continents, and the associated Northern Annular Mode (NAM) index.

Peterson and his colleagues contend that the interplay between the NAO and NAM, and continued rising temperatures from global greenhouse warming, will likely determine whether the Arctic and North Atlantic Oceans will continue to freshen. But the scientists caution that the difficultly in predicting fluctuations in atmospheric circulation makes it impossible to know where we might be headed.

"Atmospheric modes of circulation such as the NAO and NAM exert a great deal of control on net precipitation in the ocean and even on regional temperatures, and hence ice melt as well," says Peterson. "But what drives the NAO is the $64,000 question. Our inability to predict trends in the NAO/NAM means that, even if we could predict global warming very well, a large degree of uncertainty will remain in any forecasts of the decadal-centennial trajectories of the Arctic freshwater balance."

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>