Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI scientists first to predict air quality impact of small-scale power sources

24.08.2006
Technique could help regulators develop policies for distributed generation

As California searches for more sources of power, researchers at UC Irvine have created the first scientific method for predicting the impact of small-scale generators on air quality – a tool that could help the state develop environmentally sound policies to regulate and promote their use.

Using a supercomputer, scientists analyzed thousands of variables including land-use information, emissions data and atmospheric chemistry to determine the potential effect of distributed generation on Southern California air by 2010. Distributed generation – the operation of many small stationary power generators located throughout an urban air basin – includes fuel cells, photovoltaics, gas turbines, micro-turbine generators and natural gas internal combustion engines. The use of clean distributed generation in place of traditional power-plant generation cuts down on electricity transmission losses, reduces the need for unsightly overhead power lines and facilitates the use of generator waste heat, which further reduces electricity needs and emissions.

Results showed that maximum levels of ozone and particulate matter could increase slightly in Southern California because of more distributed generation use, but the impact could be far less than other power-production alternatives, such as building more power plants inside the air basin. Officials throughout the United States are discussing the merits of using more distributed generation because existing plants are reaching capacity at a time when power demand is increasing nationwide.

“Because of grid constraints, growing power demands and high power cost, California could become one of the first places where small-scale power production methods become widespread,” said Donald Dabdub, a professor of mechanical and environmental engineering in The Henry Samueli School of Engineering. “Decision-makers will need a way to assess distributed generation’s impact on air quality, and our computer model and methodology are the first to address this need.”

This study by Dabdub; Scott Samuelsen, director of the National Fuel Cell Research Center at UCI; and Jack Brouwer, associate director of the center, is the first to determine the potential air quality impact of distributed generation. Some results were published online in the September issue of Atmospheric Environment.

The research team found that if distributed generation were used to meet up to 20 percent of the increased power demand in Southern California by 2010, the basin-wide peak ozone level would increase by no more than three parts per billion. In 2003, the maximum one-hour ozone level in the South Coast air basin was 194 parts per billion. Ozone can harm the upper respiratory tract, causing a cough, shortness of breath and nausea.

The peak concentration of particulate matter – small specks of chemicals and soot that can lodge in the lungs and cause health problems – would increase by no more than two micrograms per cubic meter. In 2003, the peak daily particulate matter concentration in the South Coast air basin was 121 micrograms per cubic meter.

Despite the potential increases, researchers say that appropriate use of distributed generation is better for the air than other methods of generating additional power such as building more nuclear, coal-fired or natural gas power plants. The popularity of distributed generation is growing – today, more than 2,000 megawatts of distributed generation facilities have been installed in California, and officials expect the addition of up to 400 megawatts in small-scale projects each year. About 60 gigawatts of installed capacity currently exist in California.

“The use of distributed generation in Southern California is preferable to other in-basin strategies that we may be forced to adopt to meet the power demand in the future,” Brouwer said. “Even the cleanest natural gas power plant will have a larger air quality impact than fuel cell distributed generation. This small-scale technology has the potential to fulfill the energy needs of many consumers and provide overall energy efficiency and cost savings.”

Scientists used their computer model and research technique to determine when, where and how distributed generation could be used to produce the best possible air quality impact. They found that it is best to operate small-scale technologies as evenly as possible with regard to time, avoiding short bursts of operation. Distributed generation should be installed equally throughout the air basin, not concentrated in any one area, and the cleanest generation technologies such as fuel cell and photovoltaic devices should be used. These two technologies were found to have zero impact on ozone and particulate matter in the atmosphere – even though fuel cell systems do produce emissions.

A fuel cell works by converting the chemical energy of a fuel, such as natural gas, and an oxidant, such as air, directly to electricity using electro-chemistry. Solar photovoltaic devices use semiconducting materials to convert sunlight directly to electricity.

If fuel cells alone were used in place of a mixture of distributed generation technology investigated by the research team, they could lead to a reduction of up to three parts per billion in peak ozone and up to two micrograms per cubic meter of peak particulate matter, researchers said. Their findings suggest that fuel cell distributed generation could reduce future peak ozone concentrations by as much as six parts per billion and peak particulate matter by up to three micrograms per cubic meter compared to current power plant technology.

This project was funded by the California Energy Commission under the Public Interest Energy Research program.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.3 billion. For more UCI news, visit www.today.uci.edu.

Television: UCI has a broadcast studio available for live or taped interviews. For more information, visit http://today.uci.edu/broadcast.

News Radio: UCI maintains on campus an ISDN for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of ISDN line limited by availability and approval by the university.

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.uci.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>