Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fire In The Forest Of Insects

Forest fires often take place, but they are studied to a little extent. K.B. Gongalsky, specialist of the Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, spent several years to investigate the life of arthropoda inhabiting soil in burnt down sites. As it has turned out, forest fires destroy the majority of ground animals, however, the burnt down area does not remain empty for a long time: it is taken up by aboriginals remaining intact and those that are hunting about the forest in search of fresh fire-sites.

Forest fire kills all arthropoda inhabiting the forest litter and several upper centimeters of the soil. Only those arthropoda that ran away, flew away or buried themselves deep can survive (some of not very mobile Collembola, ticks and beetle larvae are protected from overheating by strong coverings). Some aboriginals manage to save themselves on unburnt sites miraculously remaining intact. After the fire, when the soil gets cold the unhurt insects crawl out of their refuges and look around the site of fire. It is difficult to recognize. The fire modifies physical and chemical properties of the soil, impacts the presence of nutrients in it and finally it completely destroys flora and forest litter. The site of fire turns into a flat surface without shelters, where forest litter inhabitants cannot exist. Even having survived the fire, they leave. Only those that inhabit relatively deep soil layers - larvae and Collembola - remain.

However, the fire-site desolation is seeming, as it is attractive for many living creatures. Within several hours, pyrophilic species (that need burnt forests for existence) fly together to the fire-site. Such are, for example, pyrophilic ground beetles or Phaenops cyanea, which develop exclusively on burnt wood. Researchers never determined where these insects hide themselves when there is no fire. Probably they are dispersed in the forest and gather in noticeable quantities only at sites of fire (these insects can feel smoke at the distance of 20 and more kilometers). At the fresh fire-site, pyrophilic ground beetles can make up to 80 percent of the arthropoda quantity, but they are soon forced out by other species, such as flies and leafhoppers. They are attracted by abundance of food (burnt wood and forest litter, and fungi and microbes growing upon them) as well as absence of predators. It is the lack of predators that allows them to colonize the fire-site quickly.

The scene of conflagration is gradually overgrown by mosses and other vegetation, and then phytophagans appear on it (i.e., plant-eaters): thrips (Thripidae), leafhoppers and plant-louses. The new site swarms with them, as even two years after the fire there are still no predators there. Predators are absent because the forest litter necessary for them has not been formed and the required grass has not grown up yet. Although, the game is in abundance at the site of fire, but predators have no place to live and hide themselves, so they are unable to hunt. According to K.B. Gongalsky, the initial biodiversity of the ground fauna is not restored even within 4 to 5 years after the fire.

For the former life (with flora, phytophagans and predators in place) to be in full swing again at the fire-site, the forest litter is to be restored. The restoration time depends not on the fire-site square, but on the fire intensity, that is, it depends on how much the flora has been burnt down, if wisps of grass remain intact at the site of fire, to what depth the soil got warmed up. The rate of biodiversity restoration also depends on fire-site surroundings: if there is an untouched forest around, forest insects wander into the site of fire, and inhabitants of open places arrive from motorways and fields. In other words, to restore the ground animal communities after the fire it is first of all necessary that the ecosystems should be restored.

Nadezda Markina | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>