Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fire In The Forest Of Insects

24.08.2006
Forest fires often take place, but they are studied to a little extent. K.B. Gongalsky, specialist of the Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, spent several years to investigate the life of arthropoda inhabiting soil in burnt down sites. As it has turned out, forest fires destroy the majority of ground animals, however, the burnt down area does not remain empty for a long time: it is taken up by aboriginals remaining intact and those that are hunting about the forest in search of fresh fire-sites.

Forest fire kills all arthropoda inhabiting the forest litter and several upper centimeters of the soil. Only those arthropoda that ran away, flew away or buried themselves deep can survive (some of not very mobile Collembola, ticks and beetle larvae are protected from overheating by strong coverings). Some aboriginals manage to save themselves on unburnt sites miraculously remaining intact. After the fire, when the soil gets cold the unhurt insects crawl out of their refuges and look around the site of fire. It is difficult to recognize. The fire modifies physical and chemical properties of the soil, impacts the presence of nutrients in it and finally it completely destroys flora and forest litter. The site of fire turns into a flat surface without shelters, where forest litter inhabitants cannot exist. Even having survived the fire, they leave. Only those that inhabit relatively deep soil layers - larvae and Collembola - remain.

However, the fire-site desolation is seeming, as it is attractive for many living creatures. Within several hours, pyrophilic species (that need burnt forests for existence) fly together to the fire-site. Such are, for example, pyrophilic ground beetles or Phaenops cyanea, which develop exclusively on burnt wood. Researchers never determined where these insects hide themselves when there is no fire. Probably they are dispersed in the forest and gather in noticeable quantities only at sites of fire (these insects can feel smoke at the distance of 20 and more kilometers). At the fresh fire-site, pyrophilic ground beetles can make up to 80 percent of the arthropoda quantity, but they are soon forced out by other species, such as flies and leafhoppers. They are attracted by abundance of food (burnt wood and forest litter, and fungi and microbes growing upon them) as well as absence of predators. It is the lack of predators that allows them to colonize the fire-site quickly.

The scene of conflagration is gradually overgrown by mosses and other vegetation, and then phytophagans appear on it (i.e., plant-eaters): thrips (Thripidae), leafhoppers and plant-louses. The new site swarms with them, as even two years after the fire there are still no predators there. Predators are absent because the forest litter necessary for them has not been formed and the required grass has not grown up yet. Although, the game is in abundance at the site of fire, but predators have no place to live and hide themselves, so they are unable to hunt. According to K.B. Gongalsky, the initial biodiversity of the ground fauna is not restored even within 4 to 5 years after the fire.

For the former life (with flora, phytophagans and predators in place) to be in full swing again at the fire-site, the forest litter is to be restored. The restoration time depends not on the fire-site square, but on the fire intensity, that is, it depends on how much the flora has been burnt down, if wisps of grass remain intact at the site of fire, to what depth the soil got warmed up. The rate of biodiversity restoration also depends on fire-site surroundings: if there is an untouched forest around, forest insects wander into the site of fire, and inhabitants of open places arrive from motorways and fields. In other words, to restore the ground animal communities after the fire it is first of all necessary that the ecosystems should be restored.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>