Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Schools of undersea robots give oceanographers new eyes and ears in the sea

24.08.2006
Like schools of robot fish, dozens of undersea gliders and other robotic undersea vehicles have been cruising the near-shore waters of the Central California coast during the past month. These undersea robots, along with other instruments carried on ships, airplanes, satellites, buoys, and drifters, are providing oceanographers with new ways of seeing and hearing the ocean in unprecedented detail.

All of these instruments, along with more than fifty scientists from over a dozen prestigious institutions throughout the country, are part of an extensive, ongoing research project known as "Monterey Bay 2006" (abbreviated "MB 06"). MB 06 runs from mid-July through mid-September 2006 and consists of four separate experiments that look at Central Coast waters from four different perspectives. Some experiments are trying to paint three-dimensional pictures of the ever-changing ocean currents by combining computer models with measurements of seawater temperature and chemistry. Other experiments are using sensitive underwater microphones to hear how sounds travel through turbulent coastal waters. All four of these complementary experiments are funded by the Office of Naval Research.

During the MB 06 experiment, data from nearly 100 different oceanographic sensors are being fed to a central computer system hosted by the Monterey Bay Aquarium Research Institute. MBARI-designed software allows scientists involved in the experiments to study and discuss each other's data via the internet. Thus, researchers can participate in the experiment while working on ships at sea or from their offices thousands of miles away. The general public can also look at data plots and read the scientists' discussions, as the researchers decide on a day-by-day basis where to send their undersea robots to gather the most useful data.

The following paragraphs summarize the four experiments that make up MB 06:
Adaptive Sampling and Prediction (ASAP)
The goals of the ASAP experiment are: 1) To find the most efficient ways of using autonomous ocean vehicles such as undersea gliders and to study ocean processes associated with the upwelling of cold, deep water along the Central California Coast; 2) To use the real-time data gathered by autonomous vehicles and other oceanographic instruments to improve computer models of ocean circulation; and 3) To refine these computer models so that they can reliably predict complex processes such as upwelling-related currents. In order to achieve these goals, ASAP researchers are using a technique called "adaptive sampling," in which the paths of undersea vehicles are modified each day in order to get the most useful data. The scientists are also studying how fleets of vehicles can work together in "schools" to most efficiently gather data on large ocean areas that are constantly changing over time. The ASAP experiment builds on previous research performed during the 2003 Autonomous Ocean Sampling Network (AOSN) experiment.

Assessing the Effects of Submesoscale Ocean Parameterizations (AESOP)

The AESOP experiment complements the ASAP experiment by looking closely at some of the complex ocean processes that are not explicitly covered by existing computer models. For example, waters off the Central California coast are often affected by small-scale eddies, fronts (sharp boundaries between different water masses), and internal waves (waves that form underwater, between different ocean layers). The AESOP experiment attempts to determine how such localized ocean features and physical processes affect currents, mixing, and heat transfer in coastal waters.

Layered Organization in the Coastal Ocean (LOCO)

The LOCO experiment focuses on a recently-discovered biological phenomenon-dense populations of microscopic algae and other organisms that form distinct layers beneath the ocean surface. Such biological layers may be less than a meter thick, but can extend horizontally for dozens of kilometers. Scientists involved in this experiment are examining how these layers form, how they can be detected, how the organisms within these layers interact, and how the layers affect the movement of light and sound through the ocean waters.

Undersea Persistent Surveillance (UPS)

The UPS experiment involves monitoring central coast waters using extremely sensitive underwater microphones, electromagnetic sensors, and other oceanographic instruments. Some of these instruments have been placed temporarily on the seafloor; others are being carried by robotic vehicles such as gliders and autonomous underwater vehicles (AUVs). The instruments are being used as a system to monitor the ocean environment and to track some of the research vessels that will be traversing Central Coast waters during the MB 06 experiment. This will help researchers understand how ocean layers and currents affect the transmission of sounds and electrical and magnetic signals generated by ships (as well as by marine mammals and submarines).

Additional information on the MB 06 experiment can be found at:

http://www.mbari.org/mb2006/ or by contacting one of the media representatives listed above. Still images and video to accompany this release are available to media representatives upon request.

Related links:
Main MB 06 web site: http://www.mbari.org/mb2006/
Web site for MB 06 data and scientific discussion: http://aosn.mbari.org/coop/
Web site for the 2003 AOSN experiment (precursor to the ASAP experiment): http://www.mbari.org/aosn/MontereyBay2003/
Home page for ASAP experiment: http://www.princeton.edu/~dcsl/asap/
Home page for LOCO experiment: http://www.gso.uri.edu/criticalscales/index.html
Home page for UPS experiment: http://oceans.deas.harvard.edu/PLUSNet/index_PLUSNet.html

Jennifer Huergo | Office of Naval Research
Further information:
http://www.onr.navy.mil
http://www.mbari.org

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>