Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Schools of undersea robots give oceanographers new eyes and ears in the sea

Like schools of robot fish, dozens of undersea gliders and other robotic undersea vehicles have been cruising the near-shore waters of the Central California coast during the past month. These undersea robots, along with other instruments carried on ships, airplanes, satellites, buoys, and drifters, are providing oceanographers with new ways of seeing and hearing the ocean in unprecedented detail.

All of these instruments, along with more than fifty scientists from over a dozen prestigious institutions throughout the country, are part of an extensive, ongoing research project known as "Monterey Bay 2006" (abbreviated "MB 06"). MB 06 runs from mid-July through mid-September 2006 and consists of four separate experiments that look at Central Coast waters from four different perspectives. Some experiments are trying to paint three-dimensional pictures of the ever-changing ocean currents by combining computer models with measurements of seawater temperature and chemistry. Other experiments are using sensitive underwater microphones to hear how sounds travel through turbulent coastal waters. All four of these complementary experiments are funded by the Office of Naval Research.

During the MB 06 experiment, data from nearly 100 different oceanographic sensors are being fed to a central computer system hosted by the Monterey Bay Aquarium Research Institute. MBARI-designed software allows scientists involved in the experiments to study and discuss each other's data via the internet. Thus, researchers can participate in the experiment while working on ships at sea or from their offices thousands of miles away. The general public can also look at data plots and read the scientists' discussions, as the researchers decide on a day-by-day basis where to send their undersea robots to gather the most useful data.

The following paragraphs summarize the four experiments that make up MB 06:
Adaptive Sampling and Prediction (ASAP)
The goals of the ASAP experiment are: 1) To find the most efficient ways of using autonomous ocean vehicles such as undersea gliders and to study ocean processes associated with the upwelling of cold, deep water along the Central California Coast; 2) To use the real-time data gathered by autonomous vehicles and other oceanographic instruments to improve computer models of ocean circulation; and 3) To refine these computer models so that they can reliably predict complex processes such as upwelling-related currents. In order to achieve these goals, ASAP researchers are using a technique called "adaptive sampling," in which the paths of undersea vehicles are modified each day in order to get the most useful data. The scientists are also studying how fleets of vehicles can work together in "schools" to most efficiently gather data on large ocean areas that are constantly changing over time. The ASAP experiment builds on previous research performed during the 2003 Autonomous Ocean Sampling Network (AOSN) experiment.

Assessing the Effects of Submesoscale Ocean Parameterizations (AESOP)

The AESOP experiment complements the ASAP experiment by looking closely at some of the complex ocean processes that are not explicitly covered by existing computer models. For example, waters off the Central California coast are often affected by small-scale eddies, fronts (sharp boundaries between different water masses), and internal waves (waves that form underwater, between different ocean layers). The AESOP experiment attempts to determine how such localized ocean features and physical processes affect currents, mixing, and heat transfer in coastal waters.

Layered Organization in the Coastal Ocean (LOCO)

The LOCO experiment focuses on a recently-discovered biological phenomenon-dense populations of microscopic algae and other organisms that form distinct layers beneath the ocean surface. Such biological layers may be less than a meter thick, but can extend horizontally for dozens of kilometers. Scientists involved in this experiment are examining how these layers form, how they can be detected, how the organisms within these layers interact, and how the layers affect the movement of light and sound through the ocean waters.

Undersea Persistent Surveillance (UPS)

The UPS experiment involves monitoring central coast waters using extremely sensitive underwater microphones, electromagnetic sensors, and other oceanographic instruments. Some of these instruments have been placed temporarily on the seafloor; others are being carried by robotic vehicles such as gliders and autonomous underwater vehicles (AUVs). The instruments are being used as a system to monitor the ocean environment and to track some of the research vessels that will be traversing Central Coast waters during the MB 06 experiment. This will help researchers understand how ocean layers and currents affect the transmission of sounds and electrical and magnetic signals generated by ships (as well as by marine mammals and submarines).

Additional information on the MB 06 experiment can be found at: or by contacting one of the media representatives listed above. Still images and video to accompany this release are available to media representatives upon request.

Related links:
Main MB 06 web site:
Web site for MB 06 data and scientific discussion:
Web site for the 2003 AOSN experiment (precursor to the ASAP experiment):
Home page for ASAP experiment:
Home page for LOCO experiment:
Home page for UPS experiment:

Jennifer Huergo | Office of Naval Research
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>