Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach assesses risk of water-borne pathogen disease

22.08.2006
Researchers at the University of California, San Diego (UCSD) School of Medicine, along with colleagues at the University Peruana Cayetano Heredia in Lima, Peru, have developed a novel approach for assessing the risk to humans of acquiring leptospirosis – a severe, water-borne disease that is the common cause of severe jaundice, renal failure and lung hemorrhage in urban areas throughout the developing world – from environmental water exposure.

The approach, which uses advanced molecular methods to measure risk for infection, may also be applicable to other water-borne bacterial diseases. The findings will be published on line August 21 in advance of the September issue of the journal Public Library of Science (PLoS) Medicine.

"What we found supported our hypothesis that severe leptospirosis in the Peruvian Amazon is associated with higher concentrations of more virulent forms of the bacteria at sites of exposure and transmission," said Joseph Vinetz, M.D., Associate Professor of Medicine in UCSD's Division of Infectious Diseases..

This approach to risk assessment of environmental surface waters is globally applicable, and can connect the presence of water-borne pathogens to the risk of mild versus severe human disease, according to the researchers. Scientists will be able to determine if a sample of water contains Leptospira, as well as quantify how many of the bacteria are present. More densely contaminated water sources would be more likely to cause human disease than water with a lower concentration of Leptospira.

"This can have direct policy implications for health departments in monitoring the safety of water for bathing, cleaning and swimming – all ways that diseases are spread, not just by drinking contaminated water," Vinetz said, adding that the next step is to intervene and clean up the water sources, and assess the impact of cleanup on the incidence rate of human leptospirosis.

The researchers successfully used a powerful molecular technology called polymerase chain reaction (PCR) to measure and compare levels of Leptospira in environmental surface waters at urban and rural sites in the Peruvian Amazon region of Iquitos. Leptospirosis, caused by bacteria of the genus Leptospira, is the most common disease in the world transmitted from animals to humans.

Annually, tens of millions of human cases of leptospirosis occur worldwide, and fatality rates can range as high as twenty to twenty-five percent in some regions. It occurs in both industrialized and developing countries, but is particularly prevalent in tropical countries where poor people live under highly crowded conditions, or in rural areas where people are exposed to water contaminated by the urine of Leptospira-infected mammals such as livestock or rats. Transmission also appears to coincide with warm weather and the occurrence of flooding, which washes soil contaminated with animal urine into water sources such as wells and streams.

Recent outbreaks worldwide among adventure athletes, military personnel and travelers highlight the risk for acquiring leptospirosis in tropical environments. Noted risk factors include the use of well or stream water, minding livestock, walking barefoot and the presence of rats and cats in the home.

Previous data from the Peruvian Amazon region indicated that the overall incidence of human leptospirosis was similar in urban and rural sites. However, the severe form of the disease had only been observed in urban areas. Vinetz and his research team tested two hypotheses: first, that concentration of more virulent Leptospira would be higher in urban than in rural environmental surface waters; and that the concentration and species of disease-causing Leptospira in the water would be associated with both the risk of acquiring the disease and its severity.

Standard lab culture-based methods of identifying Leptospira in water and soil sources are time-consuming, laborious, and usually unable to identify pathogenic Leptospira at all. To overcome these limitations, the scientists analyzed relatively small quantities of surface water – for instance water from gutters, wells, puddles and streams – using quantitative real-time PCR assays that amplify small amounts of DNA. By measuring DNA, the researchers were able to effectively describe and quantify the amount of pathogenic bacteria present in the water samples.

The scientists then were able to connect the molecular identification of the bacterial pathogens in the water samples to those actually infecting people and causing acute leptospirosis in rural and urban areas. This approach allowed for a precise mechanistic connection between source of infection and human disease, allowing the researchers to measure the environmental risk for bacterial infection – an approach never used before.

"This study is important because we have connected clinical and basic science to provide a quantitative risk assessment for water-borne diseases," said Vinetz. "This method of risk assessment for infection may also be applicable to other water-borne diseases such as those caused by Shigella, Salmonella, Cryptosporidium, and E. coli."

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>