Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaks in hibernation help fight bugs

18.08.2006
A habit in some animals to periodically wake up while hibernating may be an evolutionary mechanism to fight bacterial infection, according to researchers at Penn State. The finding could offer an insight into the spread and emergence of infectious disease in wildlife, and has potential implications for human health.

Many warm-blooded animals slip into an inert sleep-like state as part of a unique strategy to get past harsh winters when food supplies are low and the need for energy to stay warm is high. The immune system is in sleep mode as well.

"The production of antibodies, and white blood cells is stopped. Basically all cell reproduction shuts off," says Angela Luis, a doctoral candidate in ecology at Penn State's Center for Infectious Disease Dynamics.

However, animals regularly snap out of their torpor, and become fully active. But such sudden breaks from slumber eat into much of the animal's stored energy reserves, and it is not fully clear why the animals need to wake up, and how often

Some scientists think the answer lies in bacterial infections that could run rampant in the face of an immune system that is essentially asleep.

"Animals cannot tell when they need to wake up, or if they are infected," says Luis. If the animals hibernate for long they risk serious infection, she says, while waking up frequently wastes precious energy, and could prove fatal as well.

In other words, animals with an optimal time of torpor will win out over others, says Luis, who presented her findings at the 91st annual meeting of the Ecological Society of America.

Luis and her colleagues used a simple mathematical model that mimicked the growth of bacteria such as E. coli and Salmonella in European ground squirrels, and how it affected their torpor patterns in relation to temperature.

Microbial growth depends on temperature. Most bacteria grow faster when it is warm and much slower when it is cold. For animals exposed to Salmonella, which multiplies rapidly in warm temperature, a regular break in hibernation would be an important adaptation to combat the germs, when experiencing a warmer winter. However, Salmonella doesn't thrive at very low temperatures, so when animals experience a particularly cold winter, these breaks wouldn't be crucial.

But if the animals were exposed to certain pathogens that thrive at low temperatures, like some E. coli, the animals would still have to regularly break their hibernation to ensure protection at all temperatures, Luis explains.

"Our model, which is confirmed by field data, shows that torpor patterns generally seen in some hibernating animals may be an evolutionary adaptation to help protect them from bacteria that grow well in low temperatures," says Luis.

The researchers suggest that an understanding of how pathogens interact with their hibernating hosts could provide valuable insight into the spread and emergence of zoonotic diseases.

Amitabh Avashti | EurekAlert!
Further information:
http://www.cidd.psu.edu/
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>