Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mussels evolve quickly to defend against invasive crabs

14.08.2006
Scientists at the University of New Hampshire (UNH) have found that invasive crab species may precipitate evolutionary change in blue mussels in as little as 15 years. The study, by UNH graduate student Aaren Freeman with associate professor of zoology James Byers and published in the Aug. 11 issue of the journal Science, indicates that such a response can evolve in an evolutionary nanosecond compared to the thousands of years previously assumed. The paper is called "Divergent induced responses to an invasive predator in marine mussel populations."

"It's the blending of ecological and evolutionary time," says Freeman, a Ph.D. candidate in the department of zoology. "It's an important development in the arms race between these crabs and these mollusks." Crabs prey on blue mussels by crushing their shells.

Freeman looked at the inducible defense – shell thickening – of blue mussels (Mytlius edulis) in the presence of two invasive crab species in New England, the Asian shore crab Hemigrapsus sanguineus and the green crab Carcinus maenas. While Carcinus was introduced to New England from Europe between 150 and 200 years ago, Hemigrapsus is a relative newcomer, arriving from Asia to New Jersey in 1988. While previous research had established that mussels recognize Carcinus, it had not be determined if they recognize Hemigrapsus. And, crucial to the design of Freeman's study, Hemigrapsus is not present north of mid-coast Maine.

"This set up a chance to look at populations that had been exposed to the predators for varying lengths of time," says Freeman. "We wanted to know, how is it that these mollusks can recognize a crab that is historically not present in North America?"

Freeman exposed mussels native to the northern – above mid-coast Maine – and southern New England to both Carcinus and the Hemigrapsus. Both populations thickened their shells when exposed to waterborne cues of Carcinus, but only the southern mussels – Freeman describes them as "more worldly" – expressed inducible shell thickening in the presence of Hemigrapsus.

"The mussel's inducible response to H. sanguineus reflects natural selection favoring the recognition of this novel predator through rapid evolution of cue specifity or thresholds," Freeman and Byers write.

Findings were consistent in two experiments over two years, one in a laboratory setting in Nahant, Mass., and one in the field at Woods Hole, Mass. "The consistency over two years and two sites really suggests an underlying robust mechanism," says Byers, who is Freeman's dissertation advisor.

While this sort of rapid evolutionary response to predators has been exhibited in some other species, all have been vertebrates. The blue mussel, which Freeman describes as the lab rat of marine biologists, is an invertebrate "that people assume is not very bright," he says. Yet his findings indicate that within the brief span of 15 years, it has evolved an inducible response to a new predator.

How do mussels evolve so quickly? In southern New England, the scientists say, mussels are prey to many crabs as well as other marine species. "When Hemigrapsus came along the mussels' wheels were well-greased to respond," says Byers. "That's our best guess."

Byers helps put the impact of the research in context. Because extensive data does not exist on invasive ecology, "there's a tendency to extrapolate any data you get on an invasive species. But here we show that the response from the prey differs over just a couple hundred kilometers."

And while its "real world" impact is not immediately obvious, Byers suggests that perhaps northern Maine and Canadian shellfishers might consider "beefing up the worldliness of their naïve mussel populations before the Hemigrapsus arrives," he says, suggesting that this could be done by mixing some of the responsive southern mussels into the naïve northern stocks. "Although 15 years is fast to evolve better defenses to your predator, it can be painfully long if you're a shellfisherman," Byers adds.

This paper is one chapter of Freeman's doctoral dissertation, which also explores how mussels respond to sea stars and to multiple predators. He anticipates completing his doctoral work by October 2006, when he will begin a post-doctoral position with UNH research associate professor Fred Short.

Freeman notes that there's one predator mussels will not need to defend themselves against: him. "I used to like them, before I started working with them for my dissertation," he says. "Not anymore."

Beth Potier | EurekAlert!
Further information:
http://www.unh.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>