Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invasive species alter habitat to their benefit

11.08.2006
When scientists study habitats that alien species have invaded, they usually find predictable patterns. The diversity of native species declines, and changes occur in natural processes such as nutrient cycling, wildfire frequency and the movement of water through the system.

But simply observing such changes doesn't prove that the invaders are responsible.

University of Michigan researchers Emily Farrer and Deborah Goldberg, however, came up with a way to tease out the cause of environmental changes in northern Michigan wetlands where invasive cattails have taken hold. The cattails, they found, alter the environment in ways that hinder native species but benefit the invaders. Farrer and Goldberg will present their results Aug. 9 at a meeting of the Ecological Society of America in Memphis, Tenn.

"When you have an invasion, you typically see three things happening at once: the invasion, the change in environment and the decrease in diversity," said Farrer, a graduate student in Goldberg's laboratory group. "But they're all happening concurrently, so you can't really tell which is causing the other." Other factors may enter in. For example, human activity, such as the use of fertilizers and road salt and the suppression of natural wildfires, also may result in environmental changes that affect species diversity.

"My question was, are humans causing the changes, or are the invaders?" Farrer said. "Finding the answer has practical implications: if you're trying to restore a natural habitat, you have to know the cause of the decline in native species. Do you target the invader or try to minimize human interference?"

Farrer began by surveying marshes in northern Michigan to find out what kinds of cattails were there. The state is home to three cattail species: the native broad-leaf cattail; the invasive narrow-leaf cattail, which was introduced on the east coast in the early 19th century and eventually found its way inland; and a hybrid of the two species that is larger than either parent and tolerates a wider range of environmental conditions.

In the marshes she studied, Farrer found that hybrids were more common than native cattails. She also noted that the areas of each marsh with lots of hybrid cattails had higher nutrient levels and heavier mats of dead cattail stems than areas with only native wetland plants. The plants growing in these invaded areas also were different, with fewer classic wetland species, such as bulrushes, rushes, and sedges, and more typical land plants like grasses, asters, and goldenrods.

Next, Farrer did transplant experiments to figure out whether the invaders were causing the changes she observed. She set up four study plots in a previously uninvaded section of marsh. In one, she transplanted live hybrid cattails; in the second she added litter---the mats of dead stems that accumulate around hybrids. A third plot received both live hybrids and litter, and the fourth was left alone.

Litter accumulation was the deciding factor, she found. "Plots with the litter treatment had higher levels of nitrogen in the soil and higher turnover rates of nitrogen, along with much lower light levels and lower soil temperatures," Farrer said. "So the litter was creating a pretty different environment."

When she tallied other plants in the experimental plots, she found that both the diversity and the density of native species were lower when litter was present. But while native plants suffered, invaders prospered. "The hybrid plants performed better with litter addition," Farrer said. "They obviously aren't hindered by the litter, and the increase in nutrients may help them grow larger."

The results suggest that invasive cattails set in motion a feedback loop that helps them gain a stronghold. "The invasive cattails change the ecosystem through litter accumulation, producing an environment in which native plants don't perform well but the invaders do," said Farrer. "As the environment changes, the cattails get more abundant and change the environment even more, resulting in even more cattails. It's interesting---and sobering---to think that it's not just humans that go out and mess up the habitat; invasive species can actually initiate that cycle."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>