Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invasive species alter habitat to their benefit

11.08.2006
When scientists study habitats that alien species have invaded, they usually find predictable patterns. The diversity of native species declines, and changes occur in natural processes such as nutrient cycling, wildfire frequency and the movement of water through the system.

But simply observing such changes doesn't prove that the invaders are responsible.

University of Michigan researchers Emily Farrer and Deborah Goldberg, however, came up with a way to tease out the cause of environmental changes in northern Michigan wetlands where invasive cattails have taken hold. The cattails, they found, alter the environment in ways that hinder native species but benefit the invaders. Farrer and Goldberg will present their results Aug. 9 at a meeting of the Ecological Society of America in Memphis, Tenn.

"When you have an invasion, you typically see three things happening at once: the invasion, the change in environment and the decrease in diversity," said Farrer, a graduate student in Goldberg's laboratory group. "But they're all happening concurrently, so you can't really tell which is causing the other." Other factors may enter in. For example, human activity, such as the use of fertilizers and road salt and the suppression of natural wildfires, also may result in environmental changes that affect species diversity.

"My question was, are humans causing the changes, or are the invaders?" Farrer said. "Finding the answer has practical implications: if you're trying to restore a natural habitat, you have to know the cause of the decline in native species. Do you target the invader or try to minimize human interference?"

Farrer began by surveying marshes in northern Michigan to find out what kinds of cattails were there. The state is home to three cattail species: the native broad-leaf cattail; the invasive narrow-leaf cattail, which was introduced on the east coast in the early 19th century and eventually found its way inland; and a hybrid of the two species that is larger than either parent and tolerates a wider range of environmental conditions.

In the marshes she studied, Farrer found that hybrids were more common than native cattails. She also noted that the areas of each marsh with lots of hybrid cattails had higher nutrient levels and heavier mats of dead cattail stems than areas with only native wetland plants. The plants growing in these invaded areas also were different, with fewer classic wetland species, such as bulrushes, rushes, and sedges, and more typical land plants like grasses, asters, and goldenrods.

Next, Farrer did transplant experiments to figure out whether the invaders were causing the changes she observed. She set up four study plots in a previously uninvaded section of marsh. In one, she transplanted live hybrid cattails; in the second she added litter---the mats of dead stems that accumulate around hybrids. A third plot received both live hybrids and litter, and the fourth was left alone.

Litter accumulation was the deciding factor, she found. "Plots with the litter treatment had higher levels of nitrogen in the soil and higher turnover rates of nitrogen, along with much lower light levels and lower soil temperatures," Farrer said. "So the litter was creating a pretty different environment."

When she tallied other plants in the experimental plots, she found that both the diversity and the density of native species were lower when litter was present. But while native plants suffered, invaders prospered. "The hybrid plants performed better with litter addition," Farrer said. "They obviously aren't hindered by the litter, and the increase in nutrients may help them grow larger."

The results suggest that invasive cattails set in motion a feedback loop that helps them gain a stronghold. "The invasive cattails change the ecosystem through litter accumulation, producing an environment in which native plants don't perform well but the invaders do," said Farrer. "As the environment changes, the cattails get more abundant and change the environment even more, resulting in even more cattails. It's interesting---and sobering---to think that it's not just humans that go out and mess up the habitat; invasive species can actually initiate that cycle."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Ecology, The Environment and Conservation:

nachricht When corals eat plastics
24.05.2018 | Justus-Liebig-Universität Gießen

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>