Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Moving wildlife detrimental to oral rabies vaccination project

On August 8, 2006, the United States Department of Agriculture (USDA) Animal Plant and Health Inspection Service (APHIS), Wildlife Services (WS), will begin releasing approximately 300,000 Oral Rabies Vaccination (ORV) baits from low-flying aircraft and by car in Buchanan, Dickenson, Lee, Russell, Scott, Smyth, Tazewell, Washington, and Wise counties in southwestern Virginia. The ORV baits vaccinate raccoons against rabies when consumed.

"The ORV program in Virginia is part of a larger project that spans 14 other states," explained Jim Parkhurst, Virginia's wildlife extension specialist based at Virginia Tech's College of Natural Resources. He noted, "Raccoon rabies is the most prominent strain of rabies in Virginia." The ORV program is designed to vaccinate raccoons living in the transition zone between areas known to have raccoon rabies and areas that currently do not.

The public health costs associated with rabies detection, prevention, and control in the United States are estimated to be between $300 - $450 million annually.

According to Martin Lowney, State Director of USDA APHIS-WS in Virginia, "Translocation of wildlife (moving animals around) is one of the most detrimental threats to the eradication of rabies." Raccoon rabies arrived in the mid-Atlantic region during the late 1970s when raccoons infected with the disease were translocated from Florida to Shenandoah County, Virginia, and Hardy County, West Virginia. The rabies virus quickly spread up and down the East Coast from these released raccoons.

"Translocation of wildlife continues to be a major threat to the success of the ORV program," reiterated Lowney. Translocation occurs most often by individuals or groups hoping to supplement existing wildlife populations (how the rabies virus initially was brought to Virginia) and by the capture and release of nuisance or rehabilitated wildlife.

In Virginia, regulations currently prohibit the translocation of any wildlife species to an area other than the property where it was caught as a means to protect the health of humans, domestic animals, and wildlife. However, the general public sometimes views translocation of wildlife as a humane solution for trapped problem wildlife. "Relocating wildlife can spread disease by transferring infected animals to unaffected areas, thereby increasing the risk of disease for humans," Parkhurst pointed out. In humans, rabies is almost always a fatal disease.

In addition to the spread of disease, translocation also increases stress on an animal by forcing it to find new food sources, find new shelter, avoid predators, and defend itself while crossing the territories of other animals. "In many instances, translocation leads to the death of the affected animal and promotes the spread of zoonotic diseases," Lowney added.

Lynn Davis | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>