Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Engineer designs system to put wastewater to work

Sparing the drain to power the neighborhood

In the midst of the worldwide energy crisis, researchers at Washington University in St. Louis have been continuing their work on a microbial fuel cell that generates electricity from wastewater. Advances in the design of this fuel cell in the last year have increased the power output by a factor of 10 and future designs, already in the minds of the researchers, hope to multiply that power output by 10 times again. If that goal can be achieved, the fuel cell could be scaled up for use in food and agricultural industries to generate electrical power - all with the wastewater that today goes right down the drain.

Lars Angenent, Ph.D., assistant professor of chemical engineering, and a member of the University's Environmental Engineering Science Program, has devised a continually fed upflow microbial fuel cell (UMFC). In a paper published online in the Environmental Science Technology, Angenent describes how wastewater enters from the bottom of a system and is continuously pumped up through a cylinder filled with granules of activated carbon. Many previous microbial experiments used closed systems with a single batch of nutrient solution, but because this system is continuously fed from a fresh supply of wastewater, Angenent's UMFC has more applications for industry since wastewater is continually outputted during industrial production.

The organic matter in the wastewater provides food for a diverse community of bacteria that have developed a biofilm (a thick-layered colony of bacteria) on a simple electrode in the anode chamber. An inexpensive U-shaped proton exchange membrane inside the anode chamber separates the anode from the cathode.

As the bacteria feed on the organic material in the wastewater they release electrons to the anodic electrode. These electrons then move to the cathodic electrode via a copper wire. The formed protons are transferred through the membrane towards the cathode where they react with electrons and oxygen to form water.

This is the second design of the UMFC. Last year, Angenent's design used a cathode on top of the anode. This time, with the U-shaped design, the surface area was increased and he reduced the distance between the anode and cathode, which helped reduce power loss due to resistance. These two changes are largely responsible for the boost in power by a magnitude of 10 times from a maximum of 3 watts per cubic meter of solution last year to a maximum of 29 w/m3 today. Sustained power in the system can average 20 watts per cubic meter - enough to run a small light bulb.

Angenent and his doctoral student Jason He are exploring other anode-cathode shapes, surface areas, and distances to both increase power and reduce the resistance in the system so that less power is lost as it runs. Angenent says that for the UMFC to be economical he needs "two more breakthroughs, but [he doesn't] know what they are yet."

The economic viability level for this microbial fuel cell is around 160 watts per cubic meter of solution and the goal of increasing the power output by 10 times would double that level to around 300. If that can happen, this microbial fuel cell system would be a proof of concept with far-reaching applications in the food and agricultural industries. Since this experiment uses common and inexpensive materials and wastewater is plentiful in industry, a scaleable version of this system at one food industry could one day generate enough power for 900 American single-family households. A clean and renewable energy source, all with what's already just going down the drain.

Tony Fitzpatrick | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>