Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineer designs system to put wastewater to work

09.08.2006
Sparing the drain to power the neighborhood

In the midst of the worldwide energy crisis, researchers at Washington University in St. Louis have been continuing their work on a microbial fuel cell that generates electricity from wastewater. Advances in the design of this fuel cell in the last year have increased the power output by a factor of 10 and future designs, already in the minds of the researchers, hope to multiply that power output by 10 times again. If that goal can be achieved, the fuel cell could be scaled up for use in food and agricultural industries to generate electrical power - all with the wastewater that today goes right down the drain.

Lars Angenent, Ph.D., assistant professor of chemical engineering, and a member of the University's Environmental Engineering Science Program, has devised a continually fed upflow microbial fuel cell (UMFC). In a paper published online in the Environmental Science Technology, Angenent describes how wastewater enters from the bottom of a system and is continuously pumped up through a cylinder filled with granules of activated carbon. Many previous microbial experiments used closed systems with a single batch of nutrient solution, but because this system is continuously fed from a fresh supply of wastewater, Angenent's UMFC has more applications for industry since wastewater is continually outputted during industrial production.

The organic matter in the wastewater provides food for a diverse community of bacteria that have developed a biofilm (a thick-layered colony of bacteria) on a simple electrode in the anode chamber. An inexpensive U-shaped proton exchange membrane inside the anode chamber separates the anode from the cathode.

As the bacteria feed on the organic material in the wastewater they release electrons to the anodic electrode. These electrons then move to the cathodic electrode via a copper wire. The formed protons are transferred through the membrane towards the cathode where they react with electrons and oxygen to form water.

This is the second design of the UMFC. Last year, Angenent's design used a cathode on top of the anode. This time, with the U-shaped design, the surface area was increased and he reduced the distance between the anode and cathode, which helped reduce power loss due to resistance. These two changes are largely responsible for the boost in power by a magnitude of 10 times from a maximum of 3 watts per cubic meter of solution last year to a maximum of 29 w/m3 today. Sustained power in the system can average 20 watts per cubic meter - enough to run a small light bulb.

Angenent and his doctoral student Jason He are exploring other anode-cathode shapes, surface areas, and distances to both increase power and reduce the resistance in the system so that less power is lost as it runs. Angenent says that for the UMFC to be economical he needs "two more breakthroughs, but [he doesn't] know what they are yet."

The economic viability level for this microbial fuel cell is around 160 watts per cubic meter of solution and the goal of increasing the power output by 10 times would double that level to around 300. If that can happen, this microbial fuel cell system would be a proof of concept with far-reaching applications in the food and agricultural industries. Since this experiment uses common and inexpensive materials and wastewater is plentiful in industry, a scaleable version of this system at one food industry could one day generate enough power for 900 American single-family households. A clean and renewable energy source, all with what's already just going down the drain.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>