Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineer designs system to put wastewater to work

09.08.2006
Sparing the drain to power the neighborhood

In the midst of the worldwide energy crisis, researchers at Washington University in St. Louis have been continuing their work on a microbial fuel cell that generates electricity from wastewater. Advances in the design of this fuel cell in the last year have increased the power output by a factor of 10 and future designs, already in the minds of the researchers, hope to multiply that power output by 10 times again. If that goal can be achieved, the fuel cell could be scaled up for use in food and agricultural industries to generate electrical power - all with the wastewater that today goes right down the drain.

Lars Angenent, Ph.D., assistant professor of chemical engineering, and a member of the University's Environmental Engineering Science Program, has devised a continually fed upflow microbial fuel cell (UMFC). In a paper published online in the Environmental Science Technology, Angenent describes how wastewater enters from the bottom of a system and is continuously pumped up through a cylinder filled with granules of activated carbon. Many previous microbial experiments used closed systems with a single batch of nutrient solution, but because this system is continuously fed from a fresh supply of wastewater, Angenent's UMFC has more applications for industry since wastewater is continually outputted during industrial production.

The organic matter in the wastewater provides food for a diverse community of bacteria that have developed a biofilm (a thick-layered colony of bacteria) on a simple electrode in the anode chamber. An inexpensive U-shaped proton exchange membrane inside the anode chamber separates the anode from the cathode.

As the bacteria feed on the organic material in the wastewater they release electrons to the anodic electrode. These electrons then move to the cathodic electrode via a copper wire. The formed protons are transferred through the membrane towards the cathode where they react with electrons and oxygen to form water.

This is the second design of the UMFC. Last year, Angenent's design used a cathode on top of the anode. This time, with the U-shaped design, the surface area was increased and he reduced the distance between the anode and cathode, which helped reduce power loss due to resistance. These two changes are largely responsible for the boost in power by a magnitude of 10 times from a maximum of 3 watts per cubic meter of solution last year to a maximum of 29 w/m3 today. Sustained power in the system can average 20 watts per cubic meter - enough to run a small light bulb.

Angenent and his doctoral student Jason He are exploring other anode-cathode shapes, surface areas, and distances to both increase power and reduce the resistance in the system so that less power is lost as it runs. Angenent says that for the UMFC to be economical he needs "two more breakthroughs, but [he doesn't] know what they are yet."

The economic viability level for this microbial fuel cell is around 160 watts per cubic meter of solution and the goal of increasing the power output by 10 times would double that level to around 300. If that can happen, this microbial fuel cell system would be a proof of concept with far-reaching applications in the food and agricultural industries. Since this experiment uses common and inexpensive materials and wastewater is plentiful in industry, a scaleable version of this system at one food industry could one day generate enough power for 900 American single-family households. A clean and renewable energy source, all with what's already just going down the drain.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Ecology, The Environment and Conservation:

nachricht When corals eat plastics
24.05.2018 | Justus-Liebig-Universität Gießen

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>