Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NJIT researchers seed, heat and grow carbon nanotubes in long tubing

07.08.2006
In less than 20 minutes, researchers at New Jersey Institute of Technology (NJIT) can now seed, heat and grow carbon nanotubes in 10-foot-long, hollow thin steel tubing.

"The work took us three years to develop and get right, but now we can essentially anchor nanotubes to a tubular wall. No one has ever done anything like this before," said lead researcher Somenath Mitra, PhD, professor and acting chair of NJIT's Dep't of Chemistry and Environmental Science. Graduate and post-doctoral students who worked on the project are Mahesh Karwa, Chutarat Saridara and Roman Brukh.

The ground-breaking method will lead to improvements in cleaner gasoline, better food processing and faster, cheaper ways to clean air and water.

The discovery was recently described in the Journal of Material Chemistry, June 14, 2006, by Mitra and his team in "Selective Self-assembly of Single Walled Carbon Nanotubes in Long Steel Tubing for Chemical Separation." Other journals featuring their work are Chemical Physics Letters and Carbon and Analytical Chemistry.

A carbon nanotube is a molecular configuration of carbon in a cylindrical shape. The name is derived in part from the tube's miniscule size. Scientists estimate nanotubes are 50,000 times smaller than a human hair.

Until recently researchers have relied on the nanotubes which researchers purchase as a powder. The nanotubes are said to have remarkable, if not almost magical, properties. For example, by simply mixing the powder with polymers or chemicals, films and composites can be made.

However, the method has drawbacks. "We have never been able to anchor the powder to a large surface, nor can we grow the nanotubes in a large device. Typically we could only produce them in minute amounts, if we used the powder substance," said Mitra. Now everything has changed.

Using a catalyst either prepared on the steel surface or enabled by a chemical deposition process, the NJIT inventors have created nanotubes which can stick to the walls of narrow or wide tubes. And, they can grow considerably larger amounts of them, making the process more attractive and viable for industrial usages.

Sheryl Weinstein | EurekAlert!
Further information:
http://www.njit.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>