Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trees appear to respond slower to climate change than previously thought

03.08.2006
Genetic analysis of living spruce trees provides strong evidence for the presence of a tree refuge in Alaska during the height of the last glacial period (17,000 to 25,000 years ago), and suggests that trees cannot migrate in response to climate change as quickly as some scientists thought.

The DNA survey and analysis, led by researchers at the University of Illinois at Urbana-Champaign, will be posted online this week ahead of regular publication by the Proceedings of the National Academy of Sciences.

"White spruce (Picea glauca) is a dominant species in the boreal forests of North America," said Lynn L. Anderson, lead author and doctoral student. "In the face of global warming, we need to study how plant and animal populations have responded to climate change in the past, to better predict what will happen in the future."

In their study, the researchers analyzed chloroplast DNA from 24 spruce forests in Alaska and Canada. Because chloroplast DNA contains genes inherited from only one parent, there is no confusing genetic recombination to take into account.

"We found a significant pattern in the geographic distribution of the chloroplast DNA haplotypes (groups of individuals with similar sequences of base pairs of genetic material) that differentiates into two regions," Anderson said.

The chloroplast DNA, the researchers write, "offers compelling evidence that white spruce survived the last glacial maximum and probably some of the previous glacial episodes in Alaska. This survival must have been facilitated by the existence of favorable microhabitats … and by adaptations of these trees to harsh climate."

The DNA data help resolve an old controversy over the manner in which trees had migrated in response to past climate change, said Feng Sheng Hu, an ecologist at Illinois and corresponding author of the paper.

"One view is that trees were restricted to areas south of the continental ice sheets covering North America, and then migrated extremely rapidly as the climate grew warmer," Hu said. "The other view is that there was a refuge in the ice-free areas north of the ice sheets, and spruce trees expanded within those areas as the climate warmed. It now seems clear that a glacial refuge existed, and the trees advanced from at least two directions."

Based on the data, it also appears likely that the migration rate was lower than previously thought.

"Our results suggest that estimated rates of tree migration from fossil pollen records are too high and that the ability of trees to keep pace with global warming is more limited than previously thought," said Hu, who has studied plant responses to climate change for 15 years. "Additional analysis of fossil pollen in sediments, as well as DNA data from living trees, could help pin down the actual rate of tree movement over time."

The researchers' findings also illustrate the great resilience of white spruce – and perhaps other tree species – to climate change, and have important implications for the future.

For example, isolated populations of trees might persist in locally suitable habitats for long periods after regional climatic conditions have become unfavorable as a result of rapid global warming. This resilience might reduce the probability of species extinction and allow time for efforts at biodiversity conservation.

Or maybe not.

"Our study looked at the past, before humans had made any significant impact on climate," said Hu. "In the future, both human and natural disturbances will likely interact with climate change to reduce resilience and trigger larger ecological shifts."

The study "illustrates the power of using genetic techniques to answer paleoecological questions relevant to global change," said co-author Ken N. Paige, who has studied the genetic structure and dynamics of plant and animal populations for more than 20 years. "It's likely that more new insights can be gained by studying other plant and animal species with this approach."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Ecology, The Environment and Conservation:

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

nachricht What the size distribution of organisms tells us about the energetic efficiency of a lake
05.06.2018 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>