Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trees appear to respond slower to climate change than previously thought

03.08.2006
Genetic analysis of living spruce trees provides strong evidence for the presence of a tree refuge in Alaska during the height of the last glacial period (17,000 to 25,000 years ago), and suggests that trees cannot migrate in response to climate change as quickly as some scientists thought.

The DNA survey and analysis, led by researchers at the University of Illinois at Urbana-Champaign, will be posted online this week ahead of regular publication by the Proceedings of the National Academy of Sciences.

"White spruce (Picea glauca) is a dominant species in the boreal forests of North America," said Lynn L. Anderson, lead author and doctoral student. "In the face of global warming, we need to study how plant and animal populations have responded to climate change in the past, to better predict what will happen in the future."

In their study, the researchers analyzed chloroplast DNA from 24 spruce forests in Alaska and Canada. Because chloroplast DNA contains genes inherited from only one parent, there is no confusing genetic recombination to take into account.

"We found a significant pattern in the geographic distribution of the chloroplast DNA haplotypes (groups of individuals with similar sequences of base pairs of genetic material) that differentiates into two regions," Anderson said.

The chloroplast DNA, the researchers write, "offers compelling evidence that white spruce survived the last glacial maximum and probably some of the previous glacial episodes in Alaska. This survival must have been facilitated by the existence of favorable microhabitats … and by adaptations of these trees to harsh climate."

The DNA data help resolve an old controversy over the manner in which trees had migrated in response to past climate change, said Feng Sheng Hu, an ecologist at Illinois and corresponding author of the paper.

"One view is that trees were restricted to areas south of the continental ice sheets covering North America, and then migrated extremely rapidly as the climate grew warmer," Hu said. "The other view is that there was a refuge in the ice-free areas north of the ice sheets, and spruce trees expanded within those areas as the climate warmed. It now seems clear that a glacial refuge existed, and the trees advanced from at least two directions."

Based on the data, it also appears likely that the migration rate was lower than previously thought.

"Our results suggest that estimated rates of tree migration from fossil pollen records are too high and that the ability of trees to keep pace with global warming is more limited than previously thought," said Hu, who has studied plant responses to climate change for 15 years. "Additional analysis of fossil pollen in sediments, as well as DNA data from living trees, could help pin down the actual rate of tree movement over time."

The researchers' findings also illustrate the great resilience of white spruce – and perhaps other tree species – to climate change, and have important implications for the future.

For example, isolated populations of trees might persist in locally suitable habitats for long periods after regional climatic conditions have become unfavorable as a result of rapid global warming. This resilience might reduce the probability of species extinction and allow time for efforts at biodiversity conservation.

Or maybe not.

"Our study looked at the past, before humans had made any significant impact on climate," said Hu. "In the future, both human and natural disturbances will likely interact with climate change to reduce resilience and trigger larger ecological shifts."

The study "illustrates the power of using genetic techniques to answer paleoecological questions relevant to global change," said co-author Ken N. Paige, who has studied the genetic structure and dynamics of plant and animal populations for more than 20 years. "It's likely that more new insights can be gained by studying other plant and animal species with this approach."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>