Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trees appear to respond slower to climate change than previously thought

03.08.2006
Genetic analysis of living spruce trees provides strong evidence for the presence of a tree refuge in Alaska during the height of the last glacial period (17,000 to 25,000 years ago), and suggests that trees cannot migrate in response to climate change as quickly as some scientists thought.

The DNA survey and analysis, led by researchers at the University of Illinois at Urbana-Champaign, will be posted online this week ahead of regular publication by the Proceedings of the National Academy of Sciences.

"White spruce (Picea glauca) is a dominant species in the boreal forests of North America," said Lynn L. Anderson, lead author and doctoral student. "In the face of global warming, we need to study how plant and animal populations have responded to climate change in the past, to better predict what will happen in the future."

In their study, the researchers analyzed chloroplast DNA from 24 spruce forests in Alaska and Canada. Because chloroplast DNA contains genes inherited from only one parent, there is no confusing genetic recombination to take into account.

"We found a significant pattern in the geographic distribution of the chloroplast DNA haplotypes (groups of individuals with similar sequences of base pairs of genetic material) that differentiates into two regions," Anderson said.

The chloroplast DNA, the researchers write, "offers compelling evidence that white spruce survived the last glacial maximum and probably some of the previous glacial episodes in Alaska. This survival must have been facilitated by the existence of favorable microhabitats … and by adaptations of these trees to harsh climate."

The DNA data help resolve an old controversy over the manner in which trees had migrated in response to past climate change, said Feng Sheng Hu, an ecologist at Illinois and corresponding author of the paper.

"One view is that trees were restricted to areas south of the continental ice sheets covering North America, and then migrated extremely rapidly as the climate grew warmer," Hu said. "The other view is that there was a refuge in the ice-free areas north of the ice sheets, and spruce trees expanded within those areas as the climate warmed. It now seems clear that a glacial refuge existed, and the trees advanced from at least two directions."

Based on the data, it also appears likely that the migration rate was lower than previously thought.

"Our results suggest that estimated rates of tree migration from fossil pollen records are too high and that the ability of trees to keep pace with global warming is more limited than previously thought," said Hu, who has studied plant responses to climate change for 15 years. "Additional analysis of fossil pollen in sediments, as well as DNA data from living trees, could help pin down the actual rate of tree movement over time."

The researchers' findings also illustrate the great resilience of white spruce – and perhaps other tree species – to climate change, and have important implications for the future.

For example, isolated populations of trees might persist in locally suitable habitats for long periods after regional climatic conditions have become unfavorable as a result of rapid global warming. This resilience might reduce the probability of species extinction and allow time for efforts at biodiversity conservation.

Or maybe not.

"Our study looked at the past, before humans had made any significant impact on climate," said Hu. "In the future, both human and natural disturbances will likely interact with climate change to reduce resilience and trigger larger ecological shifts."

The study "illustrates the power of using genetic techniques to answer paleoecological questions relevant to global change," said co-author Ken N. Paige, who has studied the genetic structure and dynamics of plant and animal populations for more than 20 years. "It's likely that more new insights can be gained by studying other plant and animal species with this approach."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>