Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New report says human tampering threatens planet's life-sustaining surface

03.08.2006
Scientists call for effort to understand Earth's 'critical zone'
In a report released today, scientists call for a new systematic study of the Earth's "critical zone"--the life-sustaining outermost surface of the planet, from the vegetation canopy to groundwater and everything in between.Understanding and predicting responses to global and regional change is necessary, they say, to mitigate the impacts of humans on complex ecosystems and ultimately sustain food production.

"Development is having a great effect on the critical zone," said soil scientist Donald Sparks of the University of Delaware and co-chair of the NSF workshop that led to the report, entitled Frontiers in Exploration of the Critical Zone. "Converting some of the best land around the world into buildings, roads and concrete has implications for air and water quality and biodiversity, and over time could put pressure on our ability to produce food.

Critical zone sites include an extraordinary diversity of soils and ecosystems ranging from the tropics to the poles, from deserts to wetlands, and from rock-bound uplands to delta sediments.

"Because the critical zone includes air, water and soil and is the focal point of food production, it has a major effect on human life," Sparks said. "It is imperative that we better understand the interactions that occur there."

The report calls for an international Critical Zone Exploration Network, as well as a systematic approach across a broad array of sciences--including geology, soil science, biology, ecology, chemistry, geochemistry, geomorphology and hydrology--to study critical-zone processes.

"We need to understand how living organisms interact with the solid earth at the scale of a billionth-of-a-meter as well as the scale of landscapes, how these effects have changed over geologic time, and how they will change into the future as humans continue to drastically alter the earth's surface," said Sue Brantley, a Penn State University geoscientist who co-chaired the workshop.

Scientists need to determine "how the physical, chemical and biological components of Earth's weathering transforms mineral and organic matter, sculpts terrestrial landscapes, and controls the exchange of greenhouse gases and dust with the global atmosphere," said Enriqueta Barrera, program director in the National Science Foundation's Division of Earth Sciences, which funded the workshop that led to the report.

Scientists believe four key questions surround activity of the atmosphere, landforms, ecosystems and water.

  • What processes control fluxes of carbon, particulate and reactive gases in the atmosphere?
  • How do variations in, and changes to, chemical and physical weathering processes impact the critical zone?
  • How do weathering processes nourish ecosystems?
  • How do biogeochemical processes govern long-term sustainability of water and soil resources?

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>