Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pine plantations may be one culprit in increasing carbon dioxide levels

26.07.2006
The increasing number of pine plantations in the southern United States could contribute to a rise in carbon dioxide levels in the atmosphere, a new study reports.

This is important because carbon dioxide is a key greenhouse gas, one that is linked to global warming.

Landowners in the South are turning stands of hardwood and natural pine trees into pine plantations because pine is a more lucrative source of lumber.

But pine plantations don't retain carbon as well as hardwood or natural pine forests, said Brent Sohngen, a study co-author and an associate professor of agricultural, environmental and development economics at Ohio State University.

“For environmental reasons, policy makers may want to develop policies that encourage the establishment or maintenance of hardwood forests to ensure diversity across the landscape,” Sohngen said.

Sohngen examined the issues with Sandra Brown, an ecologist with Winrock International, a non-profit organization based in Arlington , Va. Together, the two developed a statistical model, based on the economic value of the land, to predict how many acres of hardwood and natural pine forests would be converted to pine plantations over the next 30 years. They also calculated what this potential conversion would mean in terms of carbon dioxide emissions.

The results appear in a recent issue of the journal Ecological Economics.

The researchers estimate that some 10 million acres – roughly the size of New Hampshire and Vermont – of mainly hardwood and natural pine forests will be chopped down to make way for pine plantations by 2030 in just three Southern states. That translates into roughly 700,000 tons more carbon dioxide released into the atmosphere annually, or 21 million tons over the 30-year period.

That number may seem like a drop in the bucket compared to the 3 billion tons of carbon the United States emits annually. But Sohngen is quick to point out that the model only included Arkansas, Louisiana and Mississippi and that the results can apply across the southern United States, suggesting that carbon dioxide emissions could be as much as four times higher.

The researchers used their model to estimate the proportion of land on which different types of timber were grown. They separated land into three different categories: hardwood stands (including a mix of oak, elm, ash and cottonwood); natural pine stands; and plantations of southern pine species. They also considered the per-hectare rental values for each type of stand (one hectare = 2.5 acres.)

In the last 40 years, roughly 30 million acres (12 million hectares, or about the size of state of Mississippi ) of mostly old and abandoned agricultural lands were converted to pine plantations in Arkansas , Louisiana and Mississippi . But this kind of land has become scarce, and pine plantation owners are now clearing more stands of hardwood trees and natural pines in order to cultivate plantations.

Sohngen and Brown estimate that an area roughly the size of Los Angeles – about 333,600 acres (135,000 hectares) – is converted to pine plantations each year.

Hardwood forests tend to store more carbon than pine plantations do, said Sohngen. And natural pine stands store more carbon than do pine plantations. A hardwood forest has more organic matter – leaves, branches, roots, and a mix of tree species – than a pine plantation does. More organic matter means more storage space for carbon.

Natural pine stands also have more organic matter than a carefully cultivated pine plantation – for instance, a natural pine stand typically has a wider variety of plant and tree species growing in it than a plantation does.

To encourage owners of hardwood and natural pine forests to hold on to their stands, the researchers suggest that existing conservation programs and private transactions for carbon give credit to landowners who maintain or invest in hardwood stands.

“Right now, landowners can make more money from pine than from hardwood stands,” Sohngen said. “Historically, pine plantations are much more productive in terms of timber products.”

Such subsidies would help close the gap with what owners of pine plantations currently earn – about $20 to $50 per acre per year to cultivate their stocks. Owners of hardwood and natural pine stands typically earn less.

“But maintaining hardwood and natural pine forests is an efficient way to store carbon,” he continued. “We can encourage landowners to hold on to these stands – and help reduce carbon dioxide in the atmosphere – by subsidizing their costs.”

Funding from the Electric Power Research Institute to Winrock International supported this study.

Brent Sohngen | EurekAlert!
Further information:
http://www.osu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>