Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pine plantations may be one culprit in increasing carbon dioxide levels

26.07.2006
The increasing number of pine plantations in the southern United States could contribute to a rise in carbon dioxide levels in the atmosphere, a new study reports.

This is important because carbon dioxide is a key greenhouse gas, one that is linked to global warming.

Landowners in the South are turning stands of hardwood and natural pine trees into pine plantations because pine is a more lucrative source of lumber.

But pine plantations don't retain carbon as well as hardwood or natural pine forests, said Brent Sohngen, a study co-author and an associate professor of agricultural, environmental and development economics at Ohio State University.

“For environmental reasons, policy makers may want to develop policies that encourage the establishment or maintenance of hardwood forests to ensure diversity across the landscape,” Sohngen said.

Sohngen examined the issues with Sandra Brown, an ecologist with Winrock International, a non-profit organization based in Arlington , Va. Together, the two developed a statistical model, based on the economic value of the land, to predict how many acres of hardwood and natural pine forests would be converted to pine plantations over the next 30 years. They also calculated what this potential conversion would mean in terms of carbon dioxide emissions.

The results appear in a recent issue of the journal Ecological Economics.

The researchers estimate that some 10 million acres – roughly the size of New Hampshire and Vermont – of mainly hardwood and natural pine forests will be chopped down to make way for pine plantations by 2030 in just three Southern states. That translates into roughly 700,000 tons more carbon dioxide released into the atmosphere annually, or 21 million tons over the 30-year period.

That number may seem like a drop in the bucket compared to the 3 billion tons of carbon the United States emits annually. But Sohngen is quick to point out that the model only included Arkansas, Louisiana and Mississippi and that the results can apply across the southern United States, suggesting that carbon dioxide emissions could be as much as four times higher.

The researchers used their model to estimate the proportion of land on which different types of timber were grown. They separated land into three different categories: hardwood stands (including a mix of oak, elm, ash and cottonwood); natural pine stands; and plantations of southern pine species. They also considered the per-hectare rental values for each type of stand (one hectare = 2.5 acres.)

In the last 40 years, roughly 30 million acres (12 million hectares, or about the size of state of Mississippi ) of mostly old and abandoned agricultural lands were converted to pine plantations in Arkansas , Louisiana and Mississippi . But this kind of land has become scarce, and pine plantation owners are now clearing more stands of hardwood trees and natural pines in order to cultivate plantations.

Sohngen and Brown estimate that an area roughly the size of Los Angeles – about 333,600 acres (135,000 hectares) – is converted to pine plantations each year.

Hardwood forests tend to store more carbon than pine plantations do, said Sohngen. And natural pine stands store more carbon than do pine plantations. A hardwood forest has more organic matter – leaves, branches, roots, and a mix of tree species – than a pine plantation does. More organic matter means more storage space for carbon.

Natural pine stands also have more organic matter than a carefully cultivated pine plantation – for instance, a natural pine stand typically has a wider variety of plant and tree species growing in it than a plantation does.

To encourage owners of hardwood and natural pine forests to hold on to their stands, the researchers suggest that existing conservation programs and private transactions for carbon give credit to landowners who maintain or invest in hardwood stands.

“Right now, landowners can make more money from pine than from hardwood stands,” Sohngen said. “Historically, pine plantations are much more productive in terms of timber products.”

Such subsidies would help close the gap with what owners of pine plantations currently earn – about $20 to $50 per acre per year to cultivate their stocks. Owners of hardwood and natural pine stands typically earn less.

“But maintaining hardwood and natural pine forests is an efficient way to store carbon,” he continued. “We can encourage landowners to hold on to these stands – and help reduce carbon dioxide in the atmosphere – by subsidizing their costs.”

Funding from the Electric Power Research Institute to Winrock International supported this study.

Brent Sohngen | EurekAlert!
Further information:
http://www.osu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>