Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DOE JGI sequences, releases genome of symbiotic tree fungus

25.07.2006
The DNA sequence of Laccaria bicolor, a fungus that forms a beneficial symbiosis with trees and inhabits one of the most ecologically and commercially important microbial niches in North American and Eurasian forests, has been determined by the U.S. Department of Energy DOE Joint Genome Institute (DOE JGI).

The complete Laccaria genome sequence was announced July 23 at the Fifth International Conference on Mycorrhiza in Granada, Spain by an international consortium comprised of DOE JGI, Oak Ridge National Laboratory (ORNL), France's National Institute for Agricultural Research (INRA), the University of Alabama in Huntsville (UAH), and Ghent University in Belgium, and additional groups in Germany, Sweden, and France.

"The Laccaria genome sequence will provide the global research community with a critical resource to develop faster-growing trees for producing more biomass that can be converted to fuels, and for trees capable of capturing more carbon from the atmosphere," said DOE JGI Director Eddy Rubin.

"The woody tissues of trees act as one of the world's most important terrestrial sinks for CO2, making trees an important stabilizer of carbon in the earth's environment," said Francis Martin, INRA's Laccaria project leader. "The steady rise of global atmospheric CO2 concentrations suggests that we are on the trajectory for serious environmental problems. This situation could be eased by modeling and actively managing the complex relationships between trees and fungi," said Martin.

Key factors behind the ability of trees to generate large amounts of biomass or store carbon reside in the way that they interact with soil microbes known as mycorrhizal fungi, which excel at procuring necessary, but scarce, nutrients such as phosphate and nitrogen. When Laccaria bicolor partners with plant roots, a mycorrhizal root is created, resulting in a mutualistic relationship that significantly benefits both organisms. The fungus within the root is protected from competition with other soil microbes and gains preferential access to carbohydrates within the plant.

Such mycorrhizae are critical to terrestrial ecosystems, Martin said, since approximately 85 percent of all plant species, including trees, are dependent on such interactions to thrive. Mycorrhizae significantly improve photosynthetic carbon assimilation by plants and are estimated to fix more phosphate and nitrogen than the entire worldwide chemical fertilizer industry produces.

"The study and management of such relationships holds immense potential for the agriculture, forestry, and horticulture industries, as well as far-reaching implications for land management policies and the impact of global climate change on plants," said Gopi Podila of UAH.

"This unique research opportunity enables us to advance the understanding of how functional genomics of this symbiosis enhances biomass production and carbon management, particularly through the interaction with the poplar tree, also sequenced by DOE JGI," Rubin said. "We can now harness the interaction between these species and identify the factors involved in biomass production by characterizing the changes that occur between the two genomes as the tree and the fungus collaborate to generate biomass. It also helps us to understand the interaction between these two symbionts within the context of the changing global climate."

"Characterization of the interactions between poplar and its symbiotic associate, Laccaria bicolor, allows us to explore the coordinated response to environmental stressors, such as drought and extreme temperature, and other biological factors, providing a new dimension to climate change research and a step further toward mechanistic modeling of ecosystem responses," Rubin said.

David Gilbert | EurekAlert!
Further information:
http://www.jgi.doe.gov/

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>