Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


DOE JGI sequences, releases genome of symbiotic tree fungus

The DNA sequence of Laccaria bicolor, a fungus that forms a beneficial symbiosis with trees and inhabits one of the most ecologically and commercially important microbial niches in North American and Eurasian forests, has been determined by the U.S. Department of Energy DOE Joint Genome Institute (DOE JGI).

The complete Laccaria genome sequence was announced July 23 at the Fifth International Conference on Mycorrhiza in Granada, Spain by an international consortium comprised of DOE JGI, Oak Ridge National Laboratory (ORNL), France's National Institute for Agricultural Research (INRA), the University of Alabama in Huntsville (UAH), and Ghent University in Belgium, and additional groups in Germany, Sweden, and France.

"The Laccaria genome sequence will provide the global research community with a critical resource to develop faster-growing trees for producing more biomass that can be converted to fuels, and for trees capable of capturing more carbon from the atmosphere," said DOE JGI Director Eddy Rubin.

"The woody tissues of trees act as one of the world's most important terrestrial sinks for CO2, making trees an important stabilizer of carbon in the earth's environment," said Francis Martin, INRA's Laccaria project leader. "The steady rise of global atmospheric CO2 concentrations suggests that we are on the trajectory for serious environmental problems. This situation could be eased by modeling and actively managing the complex relationships between trees and fungi," said Martin.

Key factors behind the ability of trees to generate large amounts of biomass or store carbon reside in the way that they interact with soil microbes known as mycorrhizal fungi, which excel at procuring necessary, but scarce, nutrients such as phosphate and nitrogen. When Laccaria bicolor partners with plant roots, a mycorrhizal root is created, resulting in a mutualistic relationship that significantly benefits both organisms. The fungus within the root is protected from competition with other soil microbes and gains preferential access to carbohydrates within the plant.

Such mycorrhizae are critical to terrestrial ecosystems, Martin said, since approximately 85 percent of all plant species, including trees, are dependent on such interactions to thrive. Mycorrhizae significantly improve photosynthetic carbon assimilation by plants and are estimated to fix more phosphate and nitrogen than the entire worldwide chemical fertilizer industry produces.

"The study and management of such relationships holds immense potential for the agriculture, forestry, and horticulture industries, as well as far-reaching implications for land management policies and the impact of global climate change on plants," said Gopi Podila of UAH.

"This unique research opportunity enables us to advance the understanding of how functional genomics of this symbiosis enhances biomass production and carbon management, particularly through the interaction with the poplar tree, also sequenced by DOE JGI," Rubin said. "We can now harness the interaction between these species and identify the factors involved in biomass production by characterizing the changes that occur between the two genomes as the tree and the fungus collaborate to generate biomass. It also helps us to understand the interaction between these two symbionts within the context of the changing global climate."

"Characterization of the interactions between poplar and its symbiotic associate, Laccaria bicolor, allows us to explore the coordinated response to environmental stressors, such as drought and extreme temperature, and other biological factors, providing a new dimension to climate change research and a step further toward mechanistic modeling of ecosystem responses," Rubin said.

David Gilbert | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>