Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ashes to ashes, dust to dust

21.07.2006
Plastic littering the countryside could soon be a thing of the past. Researchers have come up with an additive that enables plastic bags to be quickly decomposed by sun and rain.

Nor-X Industry AS, a company located in Sunnmøre, has launched the additive that makes plastic decompose in a short time when exposed to light and humidity. The additive also makes the plastic considerably stronger, and it is cheap to produce. This is all the result of a collaboration between the company and SINTEF, which began in 1999.

Morbid start

The relationship started when Nor-X Industry’s parent company, NorMors AS, wanted to make chin-collars to enable dead people to look nicer in their coffins. They wanted the collars to start the decomposing process after the burial so they contacted SINTEF to solve the problem. The research scientists were successful in finding an additive on the market that had the desired effect.

But there was one problem: the collars became dark and extremely visible, but the aim was for them to be as neutral as possible. This was difficult to achieve with the additives available on the market. The solution turned up together with a newly appointed research scientist from France. He suggested an idea to alter the additive so the end product would be lighter. This provided the desired result and the colour of the end product was virtually perfect. However, at that stage the manufacturing was so expensive that it would not have been economically viable in a manufacturing process.

Industrialised

The research collaboration developed further through “SkatteFunn” tax incentive scheme project. The objective now was an additive for plastic that could be handled industrially and used in plastic foil, plastic bags and food packaging. The product is a ferric organic compound. If it is added during manufacturing, it will provide both a rapid decomposition and a light colour. The results were so promising that NorMors started the new company, Nor-X Industry, to handle production and marketing.

The technology behind it

“Polyethylene and polypropylene, which we are talking about here, are sensitive to ultraviolet light, so we are just talking about assisting nature a bit,” says SINTEF senior research scientist Ferdinand Männle.

In addition to light, a little humidity, heat and oxygen are required, all of which are abundantly available in nature. Nevertheless, an ordinary polyethylene bag would take more than a year before it began to decompose, but the new plastic bags will break down quicker than an apple on the ground. After two weeks in sunlight, the bags will still have 90 percent of their strength, but after five weeks only traces will remain.

The decomposition process occurs in several stages. Firstly, the light cuts the molecules in the plastic down to such small pieces that they are ideal food for micro organisms. The satisfied micro organisms are in turn eaten by others and play a part in the food chain. The end products, which are common materials in nature, can be found in plants, moss and perhaps in earthworms. The amount of rust that remains will be so minute that it will be virtually impossible to measure. The concentration of iron in the plastic is so low that in numerical terms it would be some parts per million.

Other uses

In addition to conventional shopping bags, plastic for silo bales in agriculture is another actual use. As this plastic contains formic acid, no one is willing to recycle it. The bales need to last at least a year to satisfy users, and the alternative is to add a less aggressive form of the additive in the plastic so that it only begins to decompose after 18 months.

Nor-X Industry has also reached an agreement with the German Farmers’ Co-operative to produce an agricultural film foil for the fields around Berlin. The film will keep the soil warm in Spring and protect against the fear of frosty nights when farmers have planted potatoes. It will start to decompose after four to six weeks.

Research is currently underway on additives in several other contexts, including for use in oil protection preparedness. The product has shown that it has the capacity to materialise and break down oil.

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>